期刊文献+

基于最大反馈线性化的TORA系统非奇异镇定控制 被引量:8

Nonsingular controller for TORA system based on maximal feedback linearization
原文传递
导出
摘要 针对TORA系统的镇定控制问题,提出一种基于最大反馈线性化的非奇异控制器设计方案.应用拉格朗日方程建立TORA系统的数学模型,采用微分代数方法计算TORA系统中具有最大相对阶的虚拟输出函数,以此为基础通过反馈线性化将TORA的数学模型转化为具有稳定内动态的三阶线性系统,采用极点配置方案为TORA系统设计镇定控制器.为了解决控制律中存在的奇异值问题,采用梯度动力学方法对控制器进行调整.最后通过仿真分析验证基于最大反馈线性化的控制方案的有效性. A nonsingular control scheme is proposed for the stabilization of the translational oslillator with rotating actuator(TORA) system based on maximal feedback linearization. The mathematical model of the nonlinear TORA system is derived through using the Lagrange equations. The dummy output with the largest relative degree is obtained with the differential algebra approach. Based on this dummy output, the differential dynamics of TORA system can be transformed into a third-order linear system with stable internal dynamics, and a controller is developed via the pole assignment technique for this linear system. To conquer the singularity problem, the gradient dynamics method is adopted to regulate the control law. Numerical simulations are conducted to demonstrate the effectiveness of the proposed scheme and the correctness of the theoretical analysis.
作者 张宇 郭源博 李芦钰 张晓华 ZHANG Yu;GUO Yuan-bo;LI Lu-yu;ZHANG Xiao-hua(School of Electrical Engineering,Dalian University of Technology,Dalian 116024,China;School of Civil Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《控制与决策》 EI CSCD 北大核心 2018年第8期1415-1421,共7页 Control and Decision
基金 国家自然科学基金项目(51377013 51378093)
关键词 TORA 最大反馈线性化 极点配置 梯度动力学方法 非奇异控制 TORA: maximal feedback linearization pole assignment: gradient dynamics method: nonsingular control
  • 相关文献

参考文献6

二级参考文献66

  • 1JieHUANG GuoqiangHU.Control design for the nonlinear benchmark problem via the output regulation method[J].控制理论与应用(英文版),2004,2(1):11-19. 被引量:4
  • 2Murray R M, Hauser J. A case study in approximate linearization: The acrobot example[R]. Berkeley: EECS Department, University of California, 1991.
  • 3Spong M W. The swing up control problem for the acrobot[J]. IEEE Control Systems Magazine, 1995, 15(1): 49-55.
  • 4Xin X, Kaneda M. The swing up control for the Acrobot based on energy control approach[C]. Proc of the 41st IEEE Conf on Decision and Control. Atlantis: IEEE, 2002: 3261-3266.
  • 5Berkemeier M, Fearing R. Tracking fast inverted trajectories of the underactuated Acrobot[J]. IEEE Trans on Robotics & Automation, 1999, 15(4): 740-750.
  • 6Shiriaev A, Perram J, Canudas-de-Wit C. Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach[J]. IEEE Trans on Automatic Control, 2005, 50(8): 1164-1176.
  • 7Shiriaev A, Perram J, Robertsson A, et al. Explicit formulas for general integrals of motion for a class of mechanical systems subject to virtual constraints[C]. Proc of the 43rd IEEE Conf on Decision and Control. Nassau, 2004:1158- 1163.
  • 8Shiriaev A, Sandberg A, Canudas-de-Wit C. Motion planning and feedback stabilization of periodic orbits for an acrobot[C]. Proc of the 43rd IEEE Conf on Decision and Control. Nassau, 2004: 290-295.
  • 9Shiriaev A, Freidovich L B, Gusev S V. Transverse linearization for controlled mechanical systems with several passive degrees of freedom[J]. IEEE Trans on Automatic Control, 2010, 55(4): 893-906.
  • 10Shiriaev A, Robertsson A, Perram J, et al. Periodic motion planning for virtually constrained euler-lagrange systems[J]. Systems and Control Letters, 2006, 55(11): 900-907.

共引文献38

同被引文献54

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部