摘要
针对TORA系统的镇定控制问题,提出一种基于最大反馈线性化的非奇异控制器设计方案.应用拉格朗日方程建立TORA系统的数学模型,采用微分代数方法计算TORA系统中具有最大相对阶的虚拟输出函数,以此为基础通过反馈线性化将TORA的数学模型转化为具有稳定内动态的三阶线性系统,采用极点配置方案为TORA系统设计镇定控制器.为了解决控制律中存在的奇异值问题,采用梯度动力学方法对控制器进行调整.最后通过仿真分析验证基于最大反馈线性化的控制方案的有效性.
A nonsingular control scheme is proposed for the stabilization of the translational oslillator with rotating actuator(TORA) system based on maximal feedback linearization. The mathematical model of the nonlinear TORA system is derived through using the Lagrange equations. The dummy output with the largest relative degree is obtained with the differential algebra approach. Based on this dummy output, the differential dynamics of TORA system can be transformed into a third-order linear system with stable internal dynamics, and a controller is developed via the pole assignment technique for this linear system. To conquer the singularity problem, the gradient dynamics method is adopted to regulate the control law. Numerical simulations are conducted to demonstrate the effectiveness of the proposed scheme and the correctness of the theoretical analysis.
作者
张宇
郭源博
李芦钰
张晓华
ZHANG Yu;GUO Yuan-bo;LI Lu-yu;ZHANG Xiao-hua(School of Electrical Engineering,Dalian University of Technology,Dalian 116024,China;School of Civil Engineering,Dalian University of Technology,Dalian 116024,China)
出处
《控制与决策》
EI
CSCD
北大核心
2018年第8期1415-1421,共7页
Control and Decision
基金
国家自然科学基金项目(51377013
51378093)
关键词
TORA
最大反馈线性化
极点配置
梯度动力学方法
非奇异控制
TORA: maximal feedback linearization
pole assignment: gradient dynamics method: nonsingular control