期刊文献+

机器学习在肺内恶性磨玻璃密度结节的应用研究 被引量:1

Research on the application of machine learning in the malignant grinding glass density nodules of lung
下载PDF
导出
摘要 机器学习算法在医学肿瘤领域应用广泛,文章针对肺腺癌磨玻璃结节患者,运用Logistic回归、人工神经网络、支持向量机和Ada Boost等4种经典算法,从准确率、灵敏度、特异度、F1值和G值等5个指标进行模型性能的分析和比较,发现4种模型的准确率均高于85%,而临床医师对患者诊断准确率只有78%,并总结出不同模型的特点:BP神经网络的精度最高,具有较强的自我学习能力;支持向量机需要调节参数来优化模型,对小样本训练效果较好;Logistic回归不需要调节参数,但在大样本下训练比较耗时;Ada Boost具有组合多个模型后再做诊断的优良品质,为临床医师提供术前诊断方案. Machine learning algorithms are widely used in the field of medical oncology. In this paper, the four classic algorithms, including logistic regression, artificial neural network, support vector machine and AdaBoost methods, are applied to the patients with pulmonary adenocarcinoma ground nodules. The comparison and analysis of model performance, on accuracy, sensitivity, specificity, F1-score and G-score parts, shows that the accuracy of the four models is more than 85% while the clinician is only 78% in diagnosis. We obtain the characteristics of different models: the back propagation neural network has the highest accuracy and has strong self-learning ability, support vector machines need to adjust the parameters to optimize the model and the training effect from SVM is better for small samples. Logistic regression does not require parameters adjustment, but it is time-consuming to train under large samples. AdaBoost has the good quality of combining multiple models before making a diagnosis, which provides the clinician with a preoperative diagnosis plan.
作者 吴艇帆 张仁寿 WU Ting-fan;ZHANG Ren-shou(School of Economics and Statistics,Guangzhou University,Guangzhou 510006,China)
出处 《广州大学学报(自然科学版)》 CAS 2018年第3期33-39,共7页 Journal of Guangzhou University:Natural Science Edition
关键词 机器学习 肺腺癌 性能比较 临床医学 machine learning lung adenocarcinoma performance comparison clinical medicine
  • 相关文献

参考文献3

二级参考文献25

  • 1白云静,申洪波,孟庆刚,王永炎.中医证候复杂性特征及证候研究思路探析[J].中国中医药信息杂志,2004,11(9):754-756. 被引量:39
  • 2白云静,申洪波,孟庆刚,王永炎.基于复杂性科学的中医学发展取向与方略[J].中国中医药信息杂志,2005,12(1):2-5. 被引量:34
  • 3李建生,胡金亮,余学庆,王明航,王永炎.基于聚类分析的径向基神经网络用于证候诊断的研究[J].中国中医基础医学杂志,2005,11(9):685-687. 被引量:40
  • 4Vapnik V. Statistical learning theory [M]. New York: Wiley Press, 1998.
  • 5[ Knerr UH. Pair-wise classification and support vector machines [M]. MA: MITPress, 1999: 255-268.
  • 6Hsu CW, Lin CJ. A comparison of methods for multi-class support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13 (2): 415-425.
  • 7Platt JC, Cristianini N, Shawe Taylor J. Large margin DAGs for multiclass classification [J]. Advances in Neural Informa-tion Processing Systems, 2000, 12 (3): 547-553.
  • 8Symeon N, Nikos N, Loannis P. Multiplicative update rules for incremental training of multielass support vector machines [J]. Pattern Recognition, 2012, 45 (5); 1838-1852.
  • 9Arun Kumar M, Gopal M. Reduced one-against-all method for multiclass SVM classification [J]. Expert Systems with Appli- cations, 2011, 38 (11): 14238-14248.
  • 10Weiss GM, Hirsh H. A quantitative study of small disjuncts [C] //Proceedings of the 17th National Conference on Artificial Intelligence. Texas AAAIPress, 2000: 665-670.

共引文献58

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部