期刊文献+

数据挖掘技术在高职院校教学管理中的应用 被引量:7

Application of Data Mining Technology in Teaching Management in Higher Vocational Colleges
下载PDF
导出
摘要 职业教育是我国教育改革与发展的重点之一,教学管理是提升高职院校教学质量的关键环节。为了提高高职院校教学质量和教学水平,应用大数据挖掘技术对教学数据进行分析。首先采用Apriori算法对学生成绩表、课堂考勤表进行数据处理,然后挖掘隐藏在学习成绩和考勤数据中的规律,分析各学期不及格科目、出勤情况与毕业状态之间的关联规则。通过结果分析与评估,为任课教师和教学管理部门提供指导,帮助科学规划各学期教学管理重点,进一步改进教学管理水平,提高教学质量。 Vocational education is one of the key points of educational reform and development in China.Teaching management is the key link to improve the teaching quality in higher vocational colleges.In order to improve teaching quality and teaching level of higher vocational colleges,this paper adopts big data mining technology to analyze teaching data.Firstly,it adopts the Apriori algorithm to deal with the students' scores and the attendance tables.Then,by excavating the laws hidden in the academic achievement and attendance data,we analyse the association rules among the failed subjects,attendance rates and the states of graduation.Through analysis and evaluation results,it can provide guidance for teachers and teaching management staff,and help to make scientific planning of the priorities of teaching management in every semester,and further improve the levels of teaching management and teaching quality.
作者 米保全 MI Bao-quan 1(Gansu Institute of Mechanical & Electrical Engineering,Tianshui 741001,Chin)
出处 《软件导刊》 2018年第8期178-181,共4页 Software Guide
基金 甘肃省自然科学基金项目(1610RJZE132)
关键词 高职院校 数据挖掘 关联规则 APRIORI算法 教学管理 higher vocational colleges data mining association rules Apriori algorithm teaching management
  • 相关文献

参考文献9

二级参考文献61

  • 1郭云峰,张集祥.对关联规则挖掘中Apriori算法的一种改进[J].杭州电子科技大学学报(自然科学版),2009,29(2):60-63. 被引量:4
  • 2兰刚.大学生考试作弊现象的实证研究[J].青年研究,1997(4):37-42. 被引量:10
  • 3宗志翔,李国红.考试舞弊的法律分析[J].政法学刊,2005,22(4):65-67. 被引量:9
  • 4张京,庞引巧.大学生诚信教育的对策探究[J].社会科学论坛(学术研究卷),2007(4):167-169. 被引量:5
  • 5纪希禹;韩秋明;李微.数据挖掘技术应用实例[M]北京:机械工业出版社,2009.
  • 6JIAN PEI,JIAWEI HAN,HONGJUN. H-mine; hyperstructure mining of frequent patterns in large dtabases[A].2001.
  • 7Baker R S J D,Yacef K.The state of educational data mining in 2009:A review and future visions. Journal of Educational Data Mining . 2009
  • 8M Saarela,T K?rkk?inen.Analysing Student Performance using Sparse Data of Core Bachelor Courses. JEDM-Journal of Educational Data Mining . 2015
  • 9Ian H Witten,,Eibe Frank,Data Mining.Practical machine learning tools and techniques. Morgan Kaufmann . 2005
  • 10Vranic,M,Pintar,D,Skocir,Z.The use of data mining in education environment. Proceedings of the 9th International Conference on Telecommunications . 2007

共引文献192

同被引文献45

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部