期刊文献+

深度学习在医学图像分析中的研究进展 被引量:9

Research progress of deep learning in medical image analysis
下载PDF
导出
摘要 人工智能领域不断创新发展,促使深度学习方法的理论和应用成为研究的热点。在医学领域中,传统的人工读片等医学图像分析方法已无法适应数量迅速增长的影像资料的诊断需求,因此,深度学习方法在医学图像中的应用备受关注。本文主要总结了深度学习方法在医学图像分割、图像分类识别和计算机辅助诊断方面的研究进展,最后进行了小结和展望。 With the development of artificial intelligence,the theory and application of deep learning method has become the focus study.In the field of medicine,medical image analysis methods such as reading images by human eyes are gradually unable to meet the diagnostic needs of an increasing amount of images.Therefore,the application of deep learning methods in medical images is a hotspot.This paper summarizes the research progress of deep learning methods in medical image segmentation,image classification and recognition,and computer aided diagnosis.
作者 艾飞玲 马圆 田思佳 王肖楠 张凤 郭秀花 AI Felling;MA Yuan;TIAN Sijia;WANC Xiaonan;ZHANG Feng;CUO Xiuhua(School of Public Health,Capital Medical University,Beijing 100069)
出处 《北京生物医学工程》 2018年第4期433-438,共6页 Beijing Biomedical Engineering
基金 国家自然科学基金(81773542)资助
关键词 深度学习 医学图像 图像分割 图像分类和识别 计算机辅助诊断 deep learning medical image image segmentation image recognition and classification computer aided diagnosis
  • 相关文献

参考文献6

二级参考文献85

  • 1王曙燕,周明全,耿国华.医学图像的关联规则挖掘方法研究[J].计算机应用,2005,25(6):1408-1409. 被引量:10
  • 2贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 3张国云,郭龙源,吴健辉,胡文静.计算机视觉与图像识别[M].北京:科学出版社,2012.
  • 4Wong K.Medical image segmentation:methods and applications in functional imaging.Handb Biomed Image Anal Segmentation Models Part B,2005 ;2:111-182.
  • 5Jiang Jun,Wu Yao,Huang Meiyan,at al.3D brain tumor segmentation in multimodal MR i-mages based onlearning population-and patient-specific feature sets.Computerized Medical Imaging and Graphics,2013 ;27:512-521.
  • 6Gordillo N,Montseny E,Sobrevilla P.State of the art survey on MRI brain tumor segmentation.Magnetic Resonance Imaging,2013 ; 31:1426-1438.
  • 7Duda R O,Hart P E,Stork D G.Pattern classification,Second Edition.John Wiley & Sons,Inc,2004.
  • 8Atlas S W.Magnetic resonance imaging of the brain and spine.Lippincott Williams & Wilkins,2009.
  • 9LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition.Proc IEEE,1998; 86 (11):2278-2324.
  • 10Hinton G E,Osindero S,Teh Y.A fast learning algorithm for deep belief nets.Neural Computation,2006 ; 18:1527-1554.

共引文献152

同被引文献52

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部