期刊文献+

基于云计算的地震预警网络系统的设计与实现 被引量:7

Design and Implementation of an Earthquake Early Warning Network System Based on Cloud Computing
下载PDF
导出
摘要 传统基于数据融合的地震预警网络系统在对地震进行预警时,需要分析大量的地震数据,存在地震预警偏差高和动态监测性能差的弊端,因此本论述设计了基于云计算的地震预警网络系统,采用SaaS技术设计系统总体架构,通过核心是STM32F103RET6单片机的地震监测传感器模块,采集地震波信息。系统采用多地区地震数据并发过滤接收技术,对海量数据进行及时有效的接收和处理。系统实现过程中设计了系统的软件架构,基于Web页面的地震震波仿真显示模型,用浏览器中的High Chart JS软件模拟显示地震波形,给出了系统软件进行地震事件触发检测管理线程流程以及系统台站误触发判断实现流程。实验结果说明,所设计系统能够准确的对地震发生作出预警,动态监测性能强。 The traditional seismic early warning network system based on data fusion has to analyze a large amount of seismic data for providing early warning.This system has the disadvantages of high seismic warning deviation and poor dynamic monitoring performance.Therefore,an earthquake early warning network system based on cloud computing is designed.The"Software as a Service"(SaaS)technology is used to design the system,and the seismic wave information is collected by a seismic monitoring sensor module with STM32 F103 RET6 MCU core.The system adopts concurrent filtering and receiving technology for multiregional seismic data to receive and process massive data in time and effectively.For system implementation,the software architecture of the system is designed as follows:based on the seismic wave simulation display model ofa Web page,Highcharts JS software in the browser is used to simulate the seismic waveform.The experimental results show that the designed system can accurately provide early warning of an earthquake and has strong dynamic monitoring performance.
作者 陈新房 刘庆杰 王金峰 CHEN Xinfang, LIU Qingjie, WANG Jinfeng(Department of Disaster Information Engineering, Institute of Disaster Prevention, Sanhe 065201, Hebei, Chin)
出处 《地震工程学报》 CSCD 北大核心 2018年第3期574-581,共8页 China Earthquake Engineering Journal
基金 廊坊市科学技术研究自筹经费项目(2016011058) 河北省科技计划项目(132776311)
关键词 云计算 地震 预警网络 系统 设计 传感器 cloud computing earthquake early warning network system design sensor
  • 相关文献

参考文献10

二级参考文献128

共引文献134

同被引文献70

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部