期刊文献+

非接触式生理参数测量设备的研究 被引量:10

Research on non-contact physiological parameter measuring equipment
下载PDF
导出
摘要 文中设计非接触测量生理参数的仪器。基于图像光电容积脉搏波描记法(Imaging photoplethysmography,IPPG)原理,检测到的反射光强中就包含了组织的生理信息,通过对人脸视频图像进行卷积神经网络识别人脸,同时采用多步信号处理算法进行处理,得出心率、呼吸速率以及血氧饱和度数值。该系统可非接触进行监测,平台易操作、低成本,因而在临床应用及家庭健康监测等场景中有广阔的应用前景。 This paper designs non-contact measurement of physiological parameters. Based on image photoelectric volume pulse wave tracing( Imaging photoplethysmography,IPPG) principle,the detected contain tissue in the reflected light is strong physiological information,through the face video image convolution neural network to recognize faces,followed by signal processing algorithm for processing at the same time,it concluded that the heart rate,respiratory rate and blood oxygen saturation value. The system can not be contacted for monitoring,the platform is easy to operate and low cost,so it has a broad application prospect in clinical application and family health monitoring.
作者 汪秀军 曹大平 曹宜 舒兴 荣猛 范强 WANG Xiu-jun;CAO Da-ping;CAO Yi;SHU Xing;RONG Meng;FAN Qiang(School of Physics and Technology,Wuhan University,Wuhan 430072,Chin)
出处 《信息技术》 2018年第8期17-22,共6页 Information Technology
基金 国家自然科学基金资助(41274188)
关键词 IPPG 卷积神经网络 心率 呼吸速率 血氧饱和度 imaging photoplethysmography convolutional neural network heart rate respiratory rate blood oxygen saturation
  • 相关文献

参考文献3

二级参考文献128

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339.

共引文献1423

同被引文献74

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部