摘要
Using the nonequilibrium Green's function method combined with the tight-binding Hamiltonian, we theoretically investigate the spin-dependent transmission probability and spin Seebeck coefficient of a crossed armchair-edge graphene nanoribbon (AGNR) superl'attice p-n junction under a perpendicular magnetic field with a ferromagnetic insulator, where junction widths Wi of 40 and 41 are considered to exemplify the effect of semiconducting and metallic AGNRs, respectively. A pristine AGNR system is metallic when the transverse layer m = 3j + 2 with a positive integer j and an insulator otherwise. When stubs are present, a semiconducting AGNR junction with width W1= 40 always shows metallic behavior regardless of the potential drop magnitude, magnetization strength, stub length, and per- pendicular magnetic field strength. However, metallic or semiconducting behavior can be obtained from a metallic AGNR junction with Wi = 41 by adjusting these physical parameters. Furthermore, a metal-to-semiconductor transition can be obtained for both superlattice p-n junctions by adjust- ing the number of periods of the superlattice. In addition, the spin-dependent Seebeck coefficient and spin Seebeck coefficient of the two systems are of the same order of magnitude owing to the appearance of a transmission gap, and the maximum absolute value of the spin Seebeck coefficient reaches 370 μV/K when the optimized parameters are used. The calculated results offer new possi- bilities for designing electronic or heat-spintronic nanodevices based on the graphene superlattice p-n junction.
Using the nonequilibrium Green's function method combined with the tight-binding Hamiltonian, we theoretically investigate the spin-dependent transmission probability and spin Seebeck coefficient of a crossed armchair-edge graphene nanoribbon (AGNR) superl'attice p-n junction under a perpendicular magnetic field with a ferromagnetic insulator, where junction widths Wi of 40 and 41 are considered to exemplify the effect of semiconducting and metallic AGNRs, respectively. A pristine AGNR system is metallic when the transverse layer m = 3j + 2 with a positive integer j and an insulator otherwise. When stubs are present, a semiconducting AGNR junction with width W1= 40 always shows metallic behavior regardless of the potential drop magnitude, magnetization strength, stub length, and per- pendicular magnetic field strength. However, metallic or semiconducting behavior can be obtained from a metallic AGNR junction with Wi = 41 by adjusting these physical parameters. Furthermore, a metal-to-semiconductor transition can be obtained for both superlattice p-n junctions by adjust- ing the number of periods of the superlattice. In addition, the spin-dependent Seebeck coefficient and spin Seebeck coefficient of the two systems are of the same order of magnitude owing to the appearance of a transmission gap, and the maximum absolute value of the spin Seebeck coefficient reaches 370 μV/K when the optimized parameters are used. The calculated results offer new possi- bilities for designing electronic or heat-spintronic nanodevices based on the graphene superlattice p-n junction.
基金
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11704118, 11774085, and 11404230), the Scientific Research Fund of Hu- nan Provincial Education Department (Grant Nos. 17A193 and17C0946), the Hunan Provincial Natural Science Foundation of China (Grant No. 2017JJ3210), and the Foundation of Science and Technology Bureau of Sichuan Province (No. 2013JY0085).