期刊文献+

基于生成对抗网络的单帧红外图像超分辨算法 被引量:23

Single frame infrared image super-resolution algorithm based on generative adversarial nets
下载PDF
导出
摘要 高分辨率红外图像的获取受到了硬件性能的限制,利用信号处理的方法实现红外图像的超分辨率重建可以有效地提高红外图像的分辨率.将基于深度学习的超分辨方法应用于红外图像,实现了单帧红外图像的超分辨率重建,获得了更好的评价结果.通过引入对抗训练的思想,以及添加基于判别网络的损失函数分量,提高了放大倍数的同时,获得更好的高频细节恢复,图像边缘锐化,避免了超分辨率红外图像过于模糊. Image processing makes super-resolution infrared image reconstruction effectively improve infrared images resolution,w hich breaks through hardw are performance limits. Based on deep learning,super-resolution method is applied to infrared image,w hich enables the super-resolution reconstruction of single-frame infrared image. Thus,better evaluation results are acquired. Derived from adversarial thoughts,adding a loss function based on discriminant netw ork can improve magnification,w hich can access to better high-frequency details of the restoration and can sharpen image edge and avoid blurred super-resolution infrared images.
作者 邵保泰 汤心溢 金璐 李争 SHAO Bao-Tai1,2,3, TANG Xin-Yi1,3, JIN Lu1,2,3, LI Zheng1,3.(1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CAS Key Laboratory of hffrared System Detection and Imaging Technology, Shanghai Institute of Technical Physics, Shanghai 200083, Chin)
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2018年第4期427-432,共6页 Journal of Infrared and Millimeter Waves
基金 国家十三五国防预研项目(Jzx2016-0404/Y72-2) 上海市现场物证重点实验室基金资助项目(2017xcwzk08)~~
关键词 红外图像 超分辨率重建 深度学习 生成对抗网络 infrared image super resolution deep learning GAN
  • 相关文献

参考文献2

二级参考文献20

  • 1KANG M, CHAUDHURI S. Super-resolution image reconstruction [J]. IEEE Signal Processing Magazine, 2003,20(3):1920-1935.
  • 2FARSIU S, ROBINSON D, ELAD M, et al.. Advances and challenges in super-resolution [J]. International Journal of Imaging Systems and Technology, 2004, 14(2): 47-57.
  • 3ELAD M, DATSENKO D. Example-based regularization deployed to super-resolution reconstruction of a single image [J]. The Computer Journal, 2007, 50(4):1-16.
  • 4ELAD M, FIGUEIREDO M A T, MA Y. On the role of sparse and redundant representation in image processing [J]. Proceedings of the IEEE - Special Issue on Applications of Sparse Representation and Compressive Sensing, 2010, 98(6): 972-982.
  • 5YAND J, WRIGHT J, HUANG T. Image super-resolution via sparse representation [J]. IEEE Transactions On Image Processing, 2010, 19(11): 2861-2873.
  • 6YANG S Y, WANG M, CHEN Y G, et al.. Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding [J]. IEEE Transactions On Image Processing, 2012, 21(9):4016-4028.
  • 7TANG Y, YUAN Y, YAN P K, et al.. Greedy regression in sparse coding space for single-image super-resolution [J]. J. Vis. Commun. Image R., 2013, 24(2):148-159.
  • 8CANDES E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurement [J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223.
  • 9AHARON M, ELAD M, BRUCKSTEIN A M. K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 10ZEYDE R, ELAD M, PROTTER. On single image scale-up using sparse representation [C]. Proceedings of the 7th International Conference on Curves & Surfaces, Avignon, France,2010:711-730.

共引文献29

同被引文献139

引证文献23

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部