期刊文献+

基于深度神经网络的行人头部检测 被引量:8

Pedestrian head detection based on deep neural networks
下载PDF
导出
摘要 行人检测已成为安防、智能视频监控、景区人流量统计所依赖的核心技术,最新目标检测方法包括快速的区域卷积神经网络Fast-RCNN、单发多重检测器SSD、部分形变模型DPM等,皆为对行人整体的检测。在大场景下,行人姿态各异,物体间遮挡频繁,只有通过对行人身体部分位置建模,抓住人的局部特征,才能实现准确的定位。利用Faster-RCNN深度网络原型,针对行人头部建立检测模型,同时提取行人不同方向的头部特征,并加入空间金字塔池化层,保证检测速率,有效解决大场景下行人的部分遮挡问题,同时清晰地显示人群大致流动方向,相比普通的人头估计,更有利于人流量统计。 Pedestrian detection has become the core technology that security,intelligent video surveillance,and traffic statistics of people in the scenic area depend on.The latest object detection methods such as Fast-Regions with Convolution Neural Network(Fast-RCNN),Faster-RCNN,Single Shot Multi-box Detector(SSD),Deformable Part Models(DPM)are currently the classic algorithms for object detection.However,these algorithms pay more attention to detect the whole pedestrians.In large scenes,pedestrians have different postures and some of them are occluded frequently.Only modeling the position of the pedestrian's body and grasping the local features of the pedestrians can achieve accurate positioning.The Faster-RCNN deep network prototype is adopted,a detection model is built for pedestrian heads,head features in different directions are extracted at the same time,and a spatial pyramid pooling layer is added to ensure the detection rate.These can effectively solve the partial occlusion problem of pedestrians in large scenes and clearly show the general flow direction of pedestrians.The proposal is more conducive to the flow statistics than the ordinary head estimation.
作者 陶祝 刘正熙 熊运余 李征 TAO Zhu;LIU Zheng xi;XIONG Yun yu;LI Zheng(College of Computer,Sichuan University,Chengdu 610000,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第8期1475-1481,共7页 Computer Engineering & Science
基金 国家自然科学基金(61471250)
关键词 视频分析 行人检测 卷积神经网络 Faster-RCNN 空间金字塔池化层 video analysis pedestrian detection convolution neural network Faster RCNN spatialpyramid pooling layer
  • 相关文献

参考文献3

二级参考文献28

  • 1Dalai N,Triggs D. Histograms of oriented gradients for human detection[C]//Proceedings of Conference on Computer Vi- sion and Pattern Recognition. San Diego,june 20-25,2005 : 886-893.
  • 2Zhu Q, Yeh M C, Cheng K T, et al. Fast human detection using a cascade of histograms of oriented gradients[C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York,[J]une 17-22, 2006:1491-1498.
  • 3Stauffer C,Grimson W. Adaptive background mixture models for real time tracking[C]//Proceedings of IEEE InternationalConference on Compuler Vision and Pattern Recognition. Fort Collins,[J]une 23-25,1999:246-252.
  • 4原春锋,王传旭,张祥光,刘云.光照突变环境下基于高斯混合模型和梯度信息的视频分割[J].中国图象图形学报,2007,12(11):2068-2072. 被引量:24
  • 5Dalal N,Triggs B.Histograms of oriented gradients forhuman detection[C]//Proceedings of the 2005 IEEE InternationalConference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2005,1:886-893.
  • 6Wu B,Nevatia R.Optimizing discrimination-efficiencytradeoff in integrating heterogeneous local features forobject detection[C]//Proceedings of the 2008 IEEE InternationalConference on Computer Vision and PatternRecognition.Washington,DC:IEEE Computer Society,2008:1-8.
  • 7Viola P,Jones M.Rapid object detection using a boostedcascade of simple features[C]//Proceedings of CVPR2001,Kauai,HI,USA,2001:511-518.
  • 8Serre T,Wolf L,Bileschi S,et al.Object recognition withcortex-like mechanisms[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2007,29(3):411-428.
  • 9Ye Q,Liang J,Jiao J.Pedestrian detection in video imagesvia error correcting output code classification of manifoldsubclasses[J].IEEE Transactions on Intelligent TransportationSystems,2012,13(1):193-202.
  • 10Munder S,Gavrila D M.An experimental study on pedestrianclassification[J].IEEE Transactions on Pattern Analysisand Machine Computer Vision,2006,28(11):1863-1868.

共引文献87

同被引文献57

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部