期刊文献+

基于Haar-like和AdaBoost的车脸检测 被引量:4

Vehicle Make and Model Detection Based on Haar-like and AdaBoost
下载PDF
导出
摘要 文中为降低计算的复杂度,提高车型识别的效率,从整幅车辆图像中检测出车辆的车脸部分,用车脸图像对车型进行识别。采用能够快速计算的Haar-like特征,根据Haar-like特征的分布情况对其进行归一化处理,利用归一化处理后的特征构建多个弱分类器,再利用AdaBoost算法把选出的弱分类器级联为强分类器,最后用强分类器对车辆图像的车脸部分进行检测定位。实验结果表明,在100幅不同车辆图像测试样本中,车脸部分的平均检测率为79%,平均识别时间为184.98 ms。 In order to reduce the complexity of the calculation and improve the efficiency of vehicle identification,the vehicle make and model part of the whole vehicle image is detected and applied to vehicle recognition.Based on the Haar-like feature which can be calculated quickly,firstly,the Haar-like feature is normalized which is used to construct multiple weak classifiers,and then the selected weak classifiers are cascaded as a strong classifier by using the AdaBoost algorithm,and finally the strong classifier is applied to vehicle make and model detection. The experimental results show that the detection rate of the face part is 79% and the average recognition time is 184. 98 ms with 100 different vehicle image samples.
作者 朱善玮 李玉惠 ZHU Shanwei;LI Yuhui(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《电子科技》 2018年第8期66-68,81,共4页 Electronic Science and Technology
基金 国家自然科学基金(61363043)
关键词 车脸检测 HAAR-LIKE特征 ADABOOST算法 分类器 vehicle make and model detection Haar - like teature AdaBoost algorithm classifier
  • 相关文献

参考文献14

二级参考文献172

  • 1刘洋,王海晖,向云露,卢培磊.基于改进的Adaboost算法和帧差法的车辆检测方法[J].华中科技大学学报(自然科学版),2013,41(S1):379-382. 被引量:14
  • 2李凤慧.基于数学形态学的图像噪声处理[J].信息技术,2006,30(6):45-46. 被引量:8
  • 3李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:111
  • 4高东发,黎绍发.一种基于视频监控的运动目标快速分类方法[J].计算机应用与软件,2006,23(10):36-38. 被引量:2
  • 5高建坡,王煜坚,杨浩,吴镇扬.一种基于KL变换的椭圆模型肤色检测方法[J].电子与信息学报,2007,29(7):1739-1743. 被引量:15
  • 6Matthews N D, An P E, Charnley D, Harris C J. Vehicle detec- tion and recognition in greyscale imagery[J]. Control Engineering Practice, Printed in Great Britain, 1996,4 (4) : 473 - 479.
  • 7Sidla O, Paletta L, Lypetskyy Y, Jarmer C. Vehicle recognition for highway lane survey[A]. The 7th International IEEE Con- ference on Intelligent Transportation Systems[ C]. Washington, D.C., USA, 2004: 531 - 536.
  • 8Schneidennan H. A statistical approach to 3D object detection applied to faces and cars[A]. Proceedings WEE Conference on Computer Vision and Pattern Recognition [C ]. Hilton Head, SC, USA, 2000,1 : 746 - 751.
  • 9Sun Z, Bebis G, Miller R. On-road vehicle detection using Gabor filters and support vector machines[A]. IEEE 14th Interna- tional Conference on Digital Signal Processing[C]. Santorini, Hellas(Greece). 2002:1019 - 1022.
  • 10Sun Z, Bebis G, Miller R. Improving the performance of onroad vehicle detection by combining Gabor and wavelet fea- turesE A]. The IEEE 5th International Conference on Intelligent Transportation Systems, [ C ]. Singapore, 2002:130 - 135.

共引文献207

同被引文献17

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部