期刊文献+

过完备字典稀疏表示下的RAMP重构算法 被引量:3

RAMP reconstruction algorithm based on overcomplete dictionary sparse representation
下载PDF
导出
摘要 压缩感知理论将采样理论与压缩理论合二为一,成为最近几年来的研究热点。主要依据图像的稀疏性或是可压缩性的特点,使用K-均值奇异值分解(K-Means Singular Value Decomposition,K-SVD)算法训练获得过完备字典,使用高斯随机矩阵作为测量矩阵,最后通过正则化自适应匹配追踪算法作为压缩感知重构算法,提出了K-SVD过完备字典的正则化自适应匹配追踪算法(KSVD Regularized Adaptive Matching Pursuit,KSVD-RAMP)。通过对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标以及主观视觉上对所提算法以及传统的贪婪算法做对比。实验结果表明,该算法比基于离散小波稀疏表示的RAMP算法的峰值信噪比提升了2~6 d B。因此,该算法重构出的图像不管在视觉效果上,还是在客观评价指标上都有一定的改善。 Compressed sensing theory combines traditional sampling theory with compression theory, which has become a research hotspot in recent years. Based on the sparseness or compressibility of the image, the K-Means Singular Value Decomposition(K-SVD)algorithm is used to obtain the overcomplete dictionary, using the Gaussian random matrix as the measurement matrix and the regularized adaptive matching pursuit algorithm for compressed sensing reconstruction algorithm, the Regularization Adaptive Matching Pursuit algorithm based on K-SVD overcomplete dictionary(KSVDRAMP)is proposed. It compares the objective evaluation indexes such as the Peak Signal to Noise Ratio(PSNR), time and relative error of the reconstructed image, and compares the proposed algorithm with the traditional greedy algorithm.Experimental results show that the proposed algorithm is 2~5 d B higher than the RAMP algorithm based on sparse representation of discrete wavelet. Therefore, the reconstructed image is improved in both visual effect and objective evaluation index.
作者 刘翠响 马玉双 王宝珠 郭志涛 LIU Cuixiang;MA Yushuang;WANG Baozhu;GUO Zhitao(School of Electronic and Information Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第14期199-202,248,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61203245)
关键词 压缩感知 K-均值奇异值分解(K-SVD) 重构算法 过完备字典 compressed sensing K-Means Singular Value Decomposition (K-SVD) reconstruction algorithm overcom-plete dictionary
  • 相关文献

参考文献5

二级参考文献57

  • 1E Candes, J Romberg, T Tao. obust Uncertainty Princi- ples: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions On infor- mation Theory, 2006,52 (2) :489-509.
  • 2D Donoho. compressed sensing[J]. IEEE Transactions On information Theory, 2006,52(4) :4036-4048.
  • 3S S Chen, D L Donoho, M A Saunders. Atomic de- composition by basis pursuit [J]. SIAM Review, 2001, 43(1): 129-159.
  • 4S Mallat, Z Zhang. Matching pursuits with time-fi'equency dictionaries[J]. IEEE Transactions On Information Theo- ry. 2001,47(7) :2845-2862.
  • 5Needell D, Vershynin D. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J]. Foundation of Computational Mathematics, 2009,9(3) :317-334.
  • 6Zwartjes P and Gisolf A.Fourier reconstruction with sparse inversion[J].Geophysical Prospecting.2007,55(2):199-221.
  • 7Kabir N,Verschuur J.Restoration of missing offsets by parabolic Radon transform[J].Geophysical Prospecting.1995, 43(4):347-368.
  • 8Naghizadeh M,Sacchi M.Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data.Geophysics,2010,75(6):189-202.
  • 9Naghizadeh M,Sacchi M.Hierarchical scale curvelet interpolation of aliased seismic data.SEG Technical Program Expanded Abstracts,2010,29.
  • 10Spitz S.Seismic trace interpolation in the f-x domain[J].Geophysics.1991,56(6):785-794.

共引文献115

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部