期刊文献+

基于RSS阈值模型的Amorphous算法定位误差抑制 被引量:5

RSS threshold model-based positioning error suppression of Amorphous algorithm
下载PDF
导出
摘要 针对无线传感器网络定位算法在不同的通信模型下误差较大的问题,在Amorphous算法离线计算网络平均连通度的基础上,建立了四种RSS阈值模型来抑制Amorphous算法在不同通信模型下的定位误差。由不同阈值模型得到的阈值在不同程度上修正了算法的梯度值,使定位误差得到抑制。仿真结果表明,Amorphous算法在Regular模型下的最优阈值模型从Regular阈值模型和Log-normal阈值模型中选择;算法在Log-normal模型下的最优阈值模型从Regular阈值模型、Log-normal阈值模型、DOI阈值模型和RIM阈值中选择;算法在DOI模型和RIM模型下的最优阈值模型从Log-normal阈值模型、DOI阈值模型和RIM阈值模型中选择,最后得到Amorphous算法在不同的通信模型、通信半径和不规则度下对应的最优阈值模型。 For the problem that the positioning algorithm has a large error in wireless sensor networks under different communication models, based on the average network connectivity of the off line computation of Amorphous algorithm, four RSS (Received Signal Strength) threshold models are built up to suppress the positioning error of Amorphous algorithm under different communication models. The threshold obtained from different threshold models can be utilized to modify the gradient of the algorithm to different extents, so that the positioning error is suppressed. Simulation results show that, when Amorphous algorithm passes through the Regular model, the optimal threshold model is selected between Regular threshold model and Log normal threshold model. When the algorithm passes through the Log normal model, the optimal threshold model is selected among Regular threshold model, Lognormal threshold model, DOI threshold model and RIM threshold model. When the algorithm passes through the DOI model and RIM model, the optimal threshold model is selected among Log normal threshold model, DOI threshold model and RIM threshold model. Finally, the optimal threshold model of Amorphous algorithm under different communication models, communication radiuses and irregularity degrees can be obtained.
作者 宋海声 朱长驹 吴佳欣 杨鸿武 SONG Hai-sheng;ZHU Chang-ju;WU Jia-xin;YANG Hong-wu(College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第5期821-828,共8页 Computer Engineering & Science
基金 国家自然科学基金(11664036) 甘肃省自然科学基金(1606RJZA065)
关键词 无线传感器网络 通信模型 Amorphous算法 阈值模型 梯度值 wireless sensor networks communication model Amorphous algorithm threshold model gradient
  • 相关文献

参考文献8

二级参考文献63

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2陈维克,李文锋,首珩,袁兵.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报(交通科学与工程版),2006,30(2):265-268. 被引量:207
  • 3石为人,许磊,徐扬生.一种基于移动锚节点的静态无线传感器网络定位算法(英文)[J].仪器仪表学报,2007,28(3):385-393. 被引量:19
  • 4李瑛,胡志刚.一种基于BP神经网络的室内定位模型[J].计算技术与自动化,2007,26(2):77-80. 被引量:11
  • 5李文峰.无线传感器网络与移动机器人控制[M].北京:科学出版社.2009:56.
  • 6He T, Huang C D, Blum B M, et al. Range-Free Localization Schemes for Large Scale Sensor Networks[C]//Proc of the Ninth Annual International Conference on Mobile Computing and Networking, 2003.
  • 7Arias J, Zuloaga A. An RSSI Based Ad Hoc Location Algorithm[J]. Microprocessors and Microsystems, 2004,28 ( 5 ) : 403-405.
  • 8Luthy K A,E Grant D,Henderson T C. Leveraging RSSI for Roboric Repair of Disconnected Wireless Sensor Networks [C]//Proc of 2007 IEEE International Conference on Robotics and Automation, 2007 : 3659-3664.
  • 9Luthy K A,E Grant D,Henderson T C. Leveraging RSSI for Roboric Repair of Disconnected Wireless Sensor Networks[C]//Proc of 2007 IEEE International Conference on Robotics and Automation, 2007 : 3659-3664.
  • 10Niculescu D, Nath B. DV Based Positioning in Ad Hoc Networks[J]. Journal of Telecommunication Systerm, 2003, 22 (1/4) : 267-280.

共引文献97

同被引文献34

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部