期刊文献+

机器学习助力检验医学发展 被引量:10

Machine learning empowering laboratory medicine
原文传递
导出
摘要 医疗数据结构混杂、特征高维,传统数据仓储策略已难以满足大数据分析需求.以数据中产生模型的算法为主要研究内容的机器学习,迅即成为计算机模拟人类学习过程中智能数据分析技术的创新源泉.本文对机器学习的发展及其现处的医疗大数据背景作以简介,着重介绍其在检验医学图像识别、报告自动审核、中文医学语言处理及计算机辅助诊断中的应用,并思考其对检验医学发展带来的机遇与挑战. Traditional data storage strategy has not capacity to meet analytical needs of medical big data possessing with mixed structure and high-dimensional features. Machine learning based on algorithms that generate models in the data is becoming an innovative source of intelligent data analysis technology in computer simulation of human learning. This paper gives an introduction to the development of machine learning and its current background of medical big data. Emphases are placed on applications of machine learning in the medical image recognition, automated validation for test reports, Chinese medical language processing and computer-aided diagnosis. The opportunities and challenges to the development of laboratory medicine which taken from machine learning worth focusing.
作者 穆原 陈红兵 Mu Yuan;Chen Hongbing(Department of Clinical Laboratory,Children's Hospital of Nanjing Medical University,Nanjing 210008,China)
出处 《中华检验医学杂志》 CAS CSCD 北大核心 2018年第8期627-630,共4页 Chinese Journal of Laboratory Medicine
基金 南京医科大学科技发展基金项目(2016NJMUZD053)
关键词 机器学习 医学检验科学 医学信息学应用 模式识别 自动 Machine learning Medical laboratory science Medical informatics applications Pattern recognition automated
  • 相关文献

参考文献2

二级参考文献6

共引文献43

同被引文献86

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部