期刊文献+

Recent insights into physiological responses to nutrients by the cylindrospermopsin producing cyanobacterium,Cylindrospermopsis raciborskii 被引量:6

Recent insights into physiological responses to nutrients by the cylindrospermopsin producing cyanobacterium,Cylindrospermopsis raciborskii
下载PDF
导出
摘要 The harmful cyanobacterium Cylindrospermopsis raciborskii is a widespread species increasingly being recorded in freshwater systems around the world. Studies have demonstrated some key attributes of this species which may explain its global dominance. It has a high level of flexibility with respect to light and nutrients, being capable of growth under low and variable light conditions. However, it is the strategy with respect to nutrient utilization that has received more attention. Unlike many bloom forming species, the dominance of this species is not simply linked to higher nutrient loads. In fact it appears that it is more competitive when phosphorus and nitrogen availability is low and/or variable. An important component of this flexibility appears to be the result of within-population strain variability in responses to nutrients, as well as key physiological adaptations. Strain variability also appears to have an effect on the population-level cell quota of toxins, specifically cylindrospermopsins(CYNs). Field studies in Australia showed that populations had the highest proportion of toxic strains when dissolved inorganic phosphorus was added, resulting in stoichiometrically balanced nitrogen and phosphorus within the cells. These strategies are part of an arsenal of responses to environmental conditions, making it a challenging species to manage. However, our ability to improve bloom prediction will rely on a more detailed understanding of the complex physiology and ecology of this species. The harmful cyanobacterium Cylindrospermopsis raciborskii is a widespread species increasingly being recorded in freshwater systems around the world. Studies have demonstrated some key attributes of this species which may explain its global dominance. It has a high level of flexibility with respect to light and nutrients, being capable of growth under low and variable light conditions. However, it is the strategy with respect to nutrient utilization that has received more attention. Unlike many bloom forming species, the dominance of this species is not simply linked to higher nutrient loads. In fact it appears that it is more competitive when phosphorus and nitrogen availability is low and/or variable. An important component of this flexibility appears to be the result of within-population strain variability in responses to nutrients, as well as key physiological adaptations. Strain variability also appears to have an effect on the population-level cell quota of toxins, specifically cylindrospermopsins(CYNs). Field studies in Australia showed that populations had the highest proportion of toxic strains when dissolved inorganic phosphorus was added, resulting in stoichiometrically balanced nitrogen and phosphorus within the cells. These strategies are part of an arsenal of responses to environmental conditions, making it a challenging species to manage. However, our ability to improve bloom prediction will rely on a more detailed understanding of the complex physiology and ecology of this species.
出处 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第4期1032-1039,共8页 海洋湖沼学报(英文)
基金 Supported by the ARC Linkage grant LP130100311 Griffith University
关键词 nitrogen PHOSPHORUS cylindrospermopsins STRAINS 蓝藻 罗氏圆柱藻 生物学 生物分析
  • 相关文献

同被引文献28

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部