期刊文献+

基于内模方法的离散时间不确定系统的鲁棒预见控制

Robust Preview Control of Uncertain Discrete Systems Based on An Internal Model Approach
下载PDF
导出
摘要 本文主要研究了基于周期信号的离散时间不确定系统的鲁棒预见控制问题。首先针对离散时间不确定系统,通过向前差分,构造包含状态向量、输入向量以及可预见目标值信号的扩大误差系统,该过程中利用内模方法的假设引入另一状态量处理周期性目标信号。然后针对该扩大误差系统的闭环系统,引入Lyapunov函数,并通过线性矩阵不等式(LMI)方法,得到扩大误差系统的鲁棒控制器。这个控制器就是原系统的一个鲁棒预见控制器。数值仿真结果表明了本文所得结论的正确性和有效性。 In this paper, the problem of robust preview control for uncertain discrete-times systems with previewable periodic signal is considered. First of all, by employing the methods of forward differences for uncertain discrete-time systems, the augmented error system with the state vector, the input control vector and the previewable desired tracking signal is derived. An internal model approach was used to deal with the periodic signal during the process. Then, a Lyapunov function for the augmented error closed-loop system is introduced. And by applying LMI method, the robust controller for the augmented error system is obtained, which is regarded as the robust preview controller for the original system. At last, the numerical simulation shown the correctness and effectiveness of the results.
作者 邵一帆 高姝洁 SHAO Yi-fan, GAO Shu-jie(School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China)
出处 《科技视界》 2018年第20期1-3,共3页 Science & Technology Vision
关键词 离散不确定系统 鲁棒稳定 预见控制 扩大误差系统 内模方法 Uncertain discrete-times systems Robust control Preview control augmented error system Internal model approach
  • 相关文献

参考文献2

二级参考文献11

  • 1土谷武士,江上正.最新自动控制技术-数字预见控制[M].廖福成译.北京:北京科学技术出版社,1994:34-69.
  • 2Liu Z X, Lu S, Zhong S M, et al. Stabilization analysis for discrete-time systems with time delay[J]. Applied Mathematics and Computation, 2010, 216(7): 2024-2035.
  • 3Yu L, Gao F R. Optimal guaranteed cost control of discrete- time uncertain systems with both state and input delays[J]. J of the Franklin Institute, 2001, 338(1): 101-110.
  • 4Zhang H S, Duan G R, Xie L H. Linear quadratic regulation for linear time-varying systems with multiple input delays[J]. Automatica, 2006, 42(8): 1465-1476.
  • 5Marzbanrad J, Ahmadi G, Zohoor H, et al. Stochastic optimal preview control of a vehicle suspension[J]. J of Sound and Vibration, 2004, 275(35): 973-990.
  • 6Prabakar R S, Sujatha C, Narayanan S. Optimal semi-active preview control response of a half car vehicle model with magneto rheological damper[J]. J of Sound and Vibration, 2009, 326(35): 400-420.
  • 7Hazell A, Limebeer D J N. An efficient algorithm for discrete-time H∞ preview control[J]. Automatica, 2008, 44(9): 2441-2448:.
  • 8Liao F C, Cui Y H, Shen Z W. Optimal preview control for linear time-variant discrete systems[C]. Proc of the Eighth Int Conf on Machine Learning and Cybernetics. Baoding, 2009: 1954-1960.
  • 9WANG Hong-Xia,ZHANG Huan-Shui.Finite Horizon H∞ Preview Control[J].自动化学报,2010,36(2):327-331. 被引量:5
  • 10廖福成,徐玉洁.状态时滞时变离散时间系统的最优预见控制器设计[J].北京科技大学学报,2012,34(2):211-216. 被引量:9

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部