期刊文献+

基于用户真实轨迹的虚假轨迹生成方法 被引量:7

False Trajectory Generating Method Based on User's True Trajectory
下载PDF
导出
摘要 现有的轨迹隐私保护方法在对用户进行K-匿名保护时,较难防御拥有背景信息的攻击。为此,提出一种利用用户的真实轨迹构建虚假轨迹的方法。采用真实轨迹构建(K-1)条虚假轨迹实现K匿名,解决敌对者通过随机性识别出虚假轨迹的问题,将敌对者的背景信息融入用户运动轨迹的马尔科夫模型,防止敌对者通过背景信息识别出虚假轨迹。实验结果表明,与轨迹替换、轨迹旋转、随机行走等方法相比,该方法具有更高的虚假轨迹生成效率和较好的轨迹隐私保护效果。 Existing methods for trajectory privacy-preserve can't protect K-anonymous protection from attacks with background know ledge. To this end,a method generating dummy trajectories with user's true trajectories is proposed. By generating( K-1) dummy trajectories to achieve K-anonymous with true trajectories,adversaries can't identify them through randomness. By modeling the Markov model of user 's trajectories with considering background information,dummy trajectories can 't be broken because of background information compared with methods of trajectory replacement,trajectory rotation and random walk,the experimental results showits efficiency of dummy trajectories generation and effectiveness of privacy-preserving.
作者 林邓伟 王云峰 LIN Dengwei1 ,WANG Yunfeng2(1. College of Information Engineering, Jiaozuo University, Jiaozuo ,Henan 454000, China; 2. College of Cyber Space Security,Beijing University of Posts and Telecommunications,Beijing 100876, Chin)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第8期142-150,共9页 Computer Engineering
基金 教育部博士点基金(20124116120004)
关键词 轨迹隐私保护 虚假轨迹 真实轨迹 背景信息 K-匿名 trajectory privacy-protection false trajectory true trajectory background information K-anonymous
  • 相关文献

参考文献1

二级参考文献27

  • 1ZHANG H, XU L, HUANG H, et al. Mining spatial association rules from LBS anonymity data set for improving utilization [A]. Proceed- ings of the 2 lth IEEE International Conference on Geoinformatics [C]. Kaifeng, China, 2013.1-6.
  • 2WERNKE M, SKVORTSOV P, DURR F, et al. A classification of location privacy attacks and approaches [J], Personal & Ubiquitous Computing, 2014, 18(1):163-175.
  • 3HIDETOSHI K, YANAGISAWA Y, SATOH T. An anonymous com- munication technique using dummies for location-based services [A]. Proceedings of International Conference on Pervasive Services [C]. Santorini, Greece, 2005.88-97.
  • 4JIA J, ZHANG F. Nonexposure accurate location k-anonymity algo- rithm in LBS [J], The Scientific World Journal, 2014, 2014(1): 619357-619357.
  • 5PAN X, MENG X F, XU J L. Distortion-based anonymity for con- tinuous queries in location-based mobile services [A]. Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems [C]. New York, USA, 2009. 256-265.
  • 6GAO S, MA J F, SHI W, et al. TRPF: a trajectory privacy-preserving framework for participatory sensing [J]. IEEE Transactions on Infor- mation Forensics and Security, 2013, 8(6): 874-887.
  • 7XU T, CAI Y. Exploring historical location data for anonymity preser- vation in location-based services [A]. Proceedings of the 27th IEEE International Conference on Computer Communications 2008 [C]. Phoenix, USA, 2008. 1220-1228.
  • 8HWANG R H, HSUEH Y L. A novel time-obfuscated algorithm for trajectory privacy protection [J]. IEEE Transactions on Services Computing, 2014, 7(22): 126-139.
  • 9PALANISAMY B, LIU L. Attack-resilient mix-zones over road net- works: architecture and algorithms[J]. IEEE Transactions on Mobile Computing, 2015, 14(3): 495-508.
  • 10YANG N, CAO Y, LIU Q, et al. A novel personalized TTP-free inca-tion privacy preserving method [J]. International Journal of Security & Its Applications, 2014, 8(2): 387.

共引文献18

同被引文献56

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部