期刊文献+

基于组合预测模型的变压器油中溶解气体浓度预测 被引量:2

Prediction of Dissolved Gas Concentration in Transformer Oil Based on the Combined Forecasting Model
下载PDF
导出
摘要 结合BP神经网络和灰色理论两种单项预测模型算法,提出组合优化预测模型算法,实现对变压器油中溶解气体浓度更为精确的预测。该组合模型算法机理是根据预测误差平方和最小化的原则,首先计算各单项预测模型的权重,然后将各单项模型的权重进行加权综合计算,建立组合最优预测模型。以变压器中溶解的H_2为例验证了该组合算法汲取了两种单项算法的优点,不仅使各单项预测算法的预报误差降低,也有效提高了预测模型的预报性能。 Having forecasting model algorithm of BP neural network and grey theory based to propose a prediction model of combinatorial optimization was implemented to realize more accurate prediction of the dissolved gas concentration in transformer oil. The mechanism of this combined forecasting algorithm is to have the square sum of prediction errors minimized to calculate the weight of each prediction model,and then to carry out weighted calculation of the weight of all prediction models so as to establish an optimal combined forecasting model. Taking hydrogen in transformer as an example,the advantages of this optimal algorithm were verified to indicate that this optimal combined algorithm can reduce prediction error of each individual prediction algorithm and it effectively improves the forecasting performance.
作者 李忠明 LI Zhong-ming(Liaoning Petrochemical Vocational and Technical Colleg)
出处 《化工自动化及仪表》 CAS 2018年第8期607-610,639,共5页 Control and Instruments in Chemical Industry
关键词 组合预测模型 变压器油 溶解气 浓度 BP神经网络 灰色理论 预报误差 预报性能 combined prediction model transtormer oil dissolved gas concentration BP neural network,grey theory prediction error forecasting performance
  • 相关文献

参考文献3

二级参考文献26

共引文献30

同被引文献30

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部