期刊文献+

Multi-wavelength sampled Bragg grating quantum cascade laser arrays

Multi-wavelength sampled Bragg grating quantum cascade laser arrays
原文传递
导出
摘要 A multi-wavelength sampled Bragg grating(SBG) quantum cascade laser array operating between 7.32 and7.85 μm is reported. The sampling grating structure, which can be analyzed as a conventional grating multiplied by a sampling function, is fabricated by holographic exposure combined with optical photolithography. The sampling grating period was varied from 8 to 32 μm, and different sampling order(-1 st,-2 nd, and-3 rd order)modes were achieved. We propose that higher-order modes with optimized duty cycles can be used to take full advantage of the gain curve and improve the wavelength coverage of the SBG array, which will be beneficial to many applications. A multi-wavelength sampled Bragg grating(SBG) quantum cascade laser array operating between 7.32 and7.85 μm is reported. The sampling grating structure, which can be analyzed as a conventional grating multiplied by a sampling function, is fabricated by holographic exposure combined with optical photolithography. The sampling grating period was varied from 8 to 32 μm, and different sampling order(-1 st,-2 nd, and-3 rd order)modes were achieved. We propose that higher-order modes with optimized duty cycles can be used to take full advantage of the gain curve and improve the wavelength coverage of the SBG array, which will be beneficial to many applications.
出处 《Photonics Research》 SCIE EI 2018年第7期721-725,共5页 光子学研究(英文版)
基金 National Key Research and Development Program(2017YFB0405300,2016YFB0402303) National Natural Science Foundation of China(NSFC)(61734006,61774150,61435014,61627822,61574136)
  • 相关文献

参考文献1

二级参考文献19

  • 1Faist J, Capasso F, Sivco D, Sirtori C and Hutchinson A 1993 Science 260 73.
  • 2Capasso F, Gmach1 C, Sivco D and Cho A Y 2002 Phys. Today 55 34.
  • 3Kosterev A A and Tittel F K 2002 IEEE J. Quantum Electron. 38 582.
  • 4Maulini R, Beck M, Faist J and Gini E 2004 Appl. Phys. Lett. 84 1659.
  • 5Luo G P, Peng C, Le H Q, Pei S S, Hwang W Y, Ishaug B, Um J, Baillargeon J N and Lin C H 2001 Appl. Phys. Lett. 78 2834.
  • 6Luo G, Peng C, Le H Q, Pei S S, Lee H, Hwang W Y, Ishaug B and Zheng J 2002 IEEE J. Quantum Electron. 38 486.
  • 7Lee B G, Belkin M A, Audet R, MacArthur J, Diehl L, Pflugl C and Capasso F 2007 Appl. Phys. Lett. 91 231101.
  • 8Rauter P, Menzel S, Goyal A K, Cokden B G, Wang C A, Sanchez A, Turner G W and Capasso F 2012 Appl. Phys. Lett. 101 261117.
  • 9Rauter P, Menzel S, Goyal A K, Wang C A, Sanchez A, Turner G and Capasso F 2013 Opt. Express 21 4518.
  • 10Zhu H L, Xu X D, Wang H, Kong D H, Liang S, Zhao L J and Wang W 2010 IEEE Photon. Technol. Lett. 22 353.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部