期刊文献+

电力线路谐波检测的算法研究

Research on the Algorithm of Harmonic Detection in Power Line
下载PDF
导出
摘要 在运行的电力线路中,能快速准确实现对谐波中非平稳信号的处理,已成为现代信号处理的研究热点。而经验模态分解方法,在非平稳非线性信号处理与分析领域,不断地展现其优势。文中对经验模态分解进行了深入的研究,重点分析经验模态分解存在的模态混叠现象,并针对这一现象提出了基于经验模态分解的小波处理法。 In the operation of power lines,the fast and accurate processing of non-stationary signals in harmonics has become a research hotspot in modern signal processing.Empirical mode decomposition(EMD)shows its advantages in nonstationary nonlinear signal processing and analysis.In this paper,the empirical mode decomposition was studied deeply,and the modal aliasing phenomenon in the empirical mode decomposition was analyzed,and a wavelet processing method based on empirical mode decomposition was proposed.
作者 陈旭 丁杰峰 赵诗雅 CHEN Xu;DING Jie-feng;ZHAO Shi-ya(UHV AC and DC Inspection Centre,State Grid Hubei Corporation Maintenance Company,Yichang 443000,China)
出处 《通信电源技术》 2018年第7期76-77,共2页 Telecom Power Technology
关键词 谐波检测 经验模态分解 模态混叠 小波法 harmonic detection empirical mode decomposition modal mixing wavelet method
  • 相关文献

参考文献2

二级参考文献15

  • 1郭代飞,高振明,张坚强.利用小波门限法进行信号去噪[J].山东大学学报(理学版),2001,36(3):306-311. 被引量:22
  • 2焦丹 徐善驾 吴先良 等(JiaoDan Xu Shanjia WuXianliang et al).采用频域紧支集正交小波基消除瞬态散射回波中的高斯白噪声干扰[J]..
  • 3傅晨钊 汲胜昌 李彦明 等(Fu Chenzhao Ji Shengchang Li Yanming et al).软门限小波去噪在变压器冲击试验中的应用研究[J]..
  • 4[1]Daubechies, Ten Lectures on Wavelets, CBMS-Conference Lecture Notes[M].SIAM Philadelphia, 1992.
  • 5[2]Geronimo J S, Hardin D P, Massopust P R, Construction of orthogonal wavelets using fractal interpolation functions [J]. SIAM J Math Anal. 1996,27: 1158-1192.
  • 6[3]Chui C K, Lian J A., A study of orthonormal multi-wavelets [J]. Appl.Numer. Math, 1996, 20(3): 273-298.
  • 7[4]Xia Xiang-Gen, A new prefilter design for discrete multiwavelet transforms[J]. IEEE Trans. on Signal Processing, 1998,46(6): 1558-1570.
  • 8[5]Jiang Q T, Orthogonal multiwavelet with optimum time-frequency resolution [J]. IEEE Trans. on Signal Processing,.1998, 46 (4): 830-844.
  • 9[6]Tham Jo Yew, Lixin Shen, Seng Luan Lee et al., A general approach for analysis and application discrete multiwavelet transforms [J].IEEE Trans.on Signal Processing, 2000, 48 (2): 457-464.
  • 10[7]Jerome Lebrun, Martin Vetterli, Balanced multiwavelet theory and design[J]IEEE Trans. on Signal Processing, .1998, 46 (4): 1119-1124.

共引文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部