期刊文献+

基于多变量LSTM的工业传感器时序数据预测 被引量:40

Forecasting of industrial sensor time series based on multivariable LSTM
下载PDF
导出
摘要 传感器时序数据预测作为工业自动化和智能化的关键过程,对于自动化生产监督、风险预防和技术改进等具有重要意义。考虑到传统基于统计学的时序分析方法通用性弱、普通循环神经网络模型存在长期依赖的不足,针对工业设备温度、压力和电流强度等时序数据预测问题,提出了一种基于多变量分析的长短时记忆神经网络时序预测方法,该方法利用数据的远距离信息和多变量相关性,有效地提高了工业传感器时序数据预测的准确性。实验选取瑞典某公司的机械装载传感器数据用于训练和测试,通过与单变量长短时记忆模型以及其它主流时序预测算法比较,证明了该方法具备较好的预测性能和通用性。 The forecasting of sensor timing series is a key process for industrial automation and intelligentization,and is of great significance for automated production supervision,risk prevention and technological improvement. Considering the weak generality of traditional statistical-based time series analysis methods and the long-term dependence problem of common Recurrent Neural Network models,a method of Long Short-Term Memory Neural Network based on multivariable analysis is proposed to solve these problems,especially for forecasting temperature,pressure,and current intensity of industrial equipment. This method uses the long-term information of the data and multi-variable correlation,effectively improves the accuracy. The experiment selects a Swedish company's mechanical sensor dataset for training and testing,and compares the proposed method with the univariate long short-term memory model and other major temporal prediction algorithms. The experimental results showthat the proposed method has better prediction performance and versatility.
作者 易利容 王绍宇 殷丽丽 杨青 顾欣 YI Lirong;WANG Shaoyu;YIN Lili;YANG Qing;GU Xin(School of Computer Science and Technology,Donghua University,Shanghai 201620,China)
出处 《智能计算机与应用》 2018年第5期13-16,共4页 Intelligent Computer and Applications
基金 国家自然科学基金青年基金项目(61703092)
关键词 时间序列预测 长短时记忆神经网络 多变量分析 time series forecasting Long Short-Term Memory Neural Network multivariable analysis
  • 相关文献

参考文献2

二级参考文献76

  • 1梅立军,周强,臧路,陈祖舜.知网与同义词词林的信息融合研究[J].中文信息学报,2005,19(1):63-70. 被引量:28
  • 2董振东,董强,郝长伶.知网的理论发现[J].中文信息学报,2007,21(4):3-9. 被引量:99
  • 3LI J,WANG Q,WANG C,et al.Fuzzy keyword search over en-crypted data in cloud computing. INFOCOM’’10 . 2010
  • 4MORETTI C,BUI H,HOLLINGSWORTH K,et al.All-pairs:an abstraction for data-intensive computing on campus grids. IEEE Transactions on Parallel and Distributed Systems . 2010
  • 5DONG F,,LUO J,SONG A,et al.Resource load based stochasticDAGs scheduling mechanism for grid environment. HPCC’’10 . 2010
  • 6ZHOU J,LUO J,SONG A.NETOP:a non-cooperative game basedtopology optimization model towards improving search performance. Journal of Internet Technology .
  • 7Google investor relations. http://investor.google.com/financial . 2011
  • 8GREENBERG A,HAMILTON J,MALTZ D A,et al.The cost of acloud:research problems in data center networks. SIGCOMMComput Commun Rev . 2008
  • 9GUO C,LU G,LI D,et al.BCube:a high performance,server-centricnetwork architecture for modular data centers. SIGCOMM’’09 . 2009
  • 10About virtual machine templates. http://technet.micro-soft.com/en-us/library/bb740838.aspx . 2011

共引文献1559

同被引文献270

引证文献40

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部