期刊文献+

基于抽象故障树的化工事故预警 被引量:3

Chemical Accident Early Warning Analysis Based on Abstract Fault Tree
下载PDF
导出
摘要 情景是分析事件的发生、发展及可能的后果的有效机制,然而,基于情景的预警机制或缺乏有效的模型支撑或受制于模型的局限性,实践中难以推广.抽象故障树是同类事故故障树的高层抽象,综合历史案例与专家经验,能够刻画事故的成因的机理、情景演化过程及可能的后果,能够有效支撑基于情景的预警分析.提出一种基于抽象故障树的化工事故预警方法,基于抽象映射计算事件危害度及节点重要度,将情景演化的割集模型转换为贝叶斯网络模型,采用Board法对事故危害进行风险度量和防御事件排序,实现基于情景的不同演化路径的事故风险预测及最佳应对策略推荐,实验结果显示了该方法用于事故分析预警的有效性. Scenarios are effective mechanisms for analyzing the occurrence, development, and possible consequences of an accident. However, lack of effective model to model or limitation of models to analysis, scenario-based early warning mechanisms are difficult to popularize in practice. Abstract fault tree is a high-level abstraction of the same kind of fault tree. Based on historical cases and expert experiences, it can characterize the mechanism, evolution process, and possible consequences of the accident, and can effectively support scenario-based early warning analysis. A method of early warning of chemical accidents based on abstract fault tree is proposed. Based on the abstract map relation, hazard degree,and importance level of nodes are calculated. The scenario-evolved cutting set model is transformed into Bayesian network model. Board method is used to measure risk of accident hazard. The ranking of defense events can be used to predict the accident risk and propose the best coping strategies based on different evolution paths of scenarios. The experimental results show the effectiveness of this method in accident analysis and early warning.
作者 马超 杜军威 胡强 MA Chao;DU Jun-Wei;HU Qiang(Information Science and Technology Academy,Qingdao University of Science and Technology,Qingdao 266061,China)
出处 《计算机系统应用》 2018年第9期151-156,共6页 Computer Systems & Applications
基金 国家自然科学基金(61273180) 山东省自然基金项目(ZR2012FL17) 山东省重点研发计划(2018GGX101052 2016GGX101031) 山东省优秀中青年科学家科研奖励基金(BS2015DX010)~~
关键词 故障树 Board法 贝叶斯网络 事故预警 fault tree Board method Bayesian network early warning
  • 相关文献

参考文献5

二级参考文献42

  • 1苑春苗,陈宝智,李畅.基于感知机的故障树最小割集算法[J].中国安全科学学报,2006,16(5):141-144. 被引量:4
  • 2DHILLON B S. Design reliability: fundamentals and applications[ M]. New York: CRC Press, LLC, 1999:167- 182.
  • 3MAHADEVAN S, ZHANG R, SMITH N. Bayesian networks for system reliability reassessment [ J ]. Structural Safety, 2001,23:231-251.
  • 4KRISTIAN G L, AADERS L. madsen maximal prime sub-graph decomposition of Bayesian networks[J]. IEEE Transactions, man and cybernetics, part B : cybernetics, 2002,32( 1 ) :21-31.
  • 5WEBER P, JOUFFE L. Complex system reliability modeling with Dynamic Object Oriented Bayesian Networks (DOOBN) [ J ]. Reliability Engineering and System Safety, 2006,91 : 149-162.
  • 6WILSON A G, HUZURBAZAR A V. Bayesian networks for multilevel system reliability [ J ]. Reliability Engineering and System Safety, 2007,92:1413-1420.
  • 7MADESN A L, JENSEN F V. Lazy propagation: A junction tree inference algorithm based on lazy evaluation [ J ]. Artificial Intelligence, 1999,113 ( 1-2 ) : 203-245.
  • 8RIPLEY B D. Pattern recognition and neural networks [M]. Cambridge: Cambridge University Press, 1996: 224-234.
  • 9王祥林.某热处理厂火灾事故的故障树分析研究[J].中国安全生产科学技术,2007,3(4):132-134. 被引量:15
  • 10甘茂治 康建设 等.军用装备维修工程学[M].北京:国防工业出版社,1999..

共引文献172

同被引文献16

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部