期刊文献+

大气压等离子体射流装置及应用研究进展 被引量:14

Advance in Atmospheric Pressure Plasma Jet and Its Applications
原文传递
导出
摘要 大气压等离子体射流(APPJ)能够在开放空间而不是在狭窄放电间隙中产生高活性非平衡低温等离子体,APPJ已经成为国际上等离子体科学与技术领域的研究热点之一。本文首先介绍了4种典型的等离子体射流装置,包括单针、针-环、单双环以及微腔结构,并分析了各自的结构特点。然后介绍了APPJ近几年的研究进展,包括射流装置结构、活性粒子探测方法、射流与外界物质相互作用及应用等方面。最后对APPJ面临的一些关键问题和发展方向进行了展望。 The latest progress in atmospheric pressure plasma jet( APPJ) and its applications were tentatively reviewed. The discussions centered on: i) the advantages over the conventional dielectric barrier discharge( DBD),such as the generation of highly active,non-equilibrium,low-temperature plasma in open space,instead of in a narrow discharge gap; ii) the structures and properties of the four typical APPJs,including the single-needle,needle-ring,single/double-ring and micro-cavity; and iii) the hot-spot research subjects,including but not limited to the structure optimization,diagnosis of highly active particles,interaction of the plasma with different materials,and applications. In addition,the major technical problems and possible solutions and development trends of APPJ were briefly discussed in a thought provoking way.
作者 李文浩 田朝 冯绅绅 宁付鹏 白超 尤江 侯吉磊 孟月东 万树德 方应翠 Li Wenhao;Tian Chao;Feng Shenshen;Ning Fupeng;Bai Chao;You Jiang;Hou Jilei l;Meng Yuedong;Wan Shude;Fang Yingcui(Department of Vacuum and Process Equipment,School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,China;Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,China;Department of Modern Physics,University of Science and Technology of China,Hefei 230026,China)
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2018年第8期695-707,共13页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金项目(No.11674081) 安徽省自然科学基金项目(No.1708085MA11) 合肥工业大学大学生创新项目资助(201610359006)
关键词 大气压等离子体 等离子体射流 介质阻挡放电 电极结构 纳米薄膜沉积 Atmospheric pressure plasma Plasma jet Dielectric barrier discharge Electrode structure Deposition of nano-thin films
  • 相关文献

参考文献3

二级参考文献210

  • 1Park J, Henins I, Herrmann H W, et al. 2000, J. Appl. Phys., 89: 15.
  • 2Jang B W L. 2003, Ind. Eng. Chern. Res., 42: 2767.
  • 3Birmingham J G, Hammerstrom D J. 2000, IEEE Transactions on Plasma Science, 28: 51.
  • 4Park J, Herrmann H W, Henins I, et al. 1998, Atmo?spheric pressure plasma jet applications. Proceedings of the 1998 IEEE International Conference on Plasma Science, Raleigh, NC, USA. 1: 290, IEEE Inc., Piscat?away, NJ, USA.
  • 5Herrmann H W, Henins I, Park J, et al. 1999, Physics of Plasmas, 6: 2284.
  • 6Herrmann H W, Selwyn G S, Henins I, et al. 1999, Atmospheric pressure plasma for decontamination of Cherri/Bio Warfare agents. The 26th IEEE Inter?national Conference on Plasma Science (ICOPS99), Monterey, CA, USA. 1: 210, IEEE Inc., Piscataway, NJ, USA.
  • 7Herrmann H W, Selwyn G S, Henins I, et aI. 2000, Atmospheric pressure plasma jet technology applied to chem/bio decontamination. ICOPS 2000-27th IEEE International Conference on Plasma Science, New Or?leans, LA, USA. 1: 82, IEEE Inc., Piscataway, NJ, USA.
  • 8Herrmann H W, Selwyn G S, Henins I, et al. 2002, IEEE Transactions on Plasma Science, 30: 1460.
  • 9Birmingham J. 2000, Chemical and bacterial decon?tamination using a micromachined plasma discharge. ICOPS 2000-27th IEEE International Conference on Plasma Science, New Orleans, LA, USA. 1: 108, IEEE Inc., Piscataway, N J, USA.
  • 10Moeller T M, Alexander M L, Engelhard M H, et aI. 2002, IEEE Transactions on Plasma Science, 30: 1454.

共引文献32

同被引文献159

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部