期刊文献+

基于业务类型的集中式接入网基站处理资源分配算法 被引量:1

Service aware base station processing resource allocation for centralized radio access network
下载PDF
导出
摘要 现有的资源分配算法研究主要面向数据中心和云计算环境展开,未能充分考虑基站处理资源的多样性(CPU、内存、网络带宽、FPGA、DSP)和业务种类的多样性,不能直接应用于集中式接入网架构中。针对该问题,提出了基于业务类型的资源分配算法,首先采用Fisher分割方法,根据用户业务类型对不同类型计算资源的需求,对业务进行分类,然后利用资源分配均衡策略分配基站处理资源。仿真结果表明,该算法有效地减少了开启物理服务器的个数并提高了物理服务器的资源利用率,达到了绿色节能的目的。 Current research on resource allocation algorithms mainly focuses on data centers, and cloud computing environments. These resource allocation algorithms did not consider the diversity of processing resources(CPU, memory, network bandwidth, FPGA, DSP) and the diversity of service types in the centralized base station, resulting in the low processing resource utilization. In order to solve this problem, a service oriented base station processing resource allocation algorithm was proposed. Firstly, the Fisher partition method was used to classify the base station's processing resource requirements according to the user's service request. Then, the resource allocation balancing strategy was used to allocate the base station processing resources. Experimental results show that the algorithm is effective to reduce the number of physical servers and improves the resource utilization of the servers, realizing energy conservation and communications.
作者 张新苹 王园园 田霖 郝树良 ZHANG Xinping;WANG Yuanyuan;TIAN Lin;HAO Shuliang(Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China)
出处 《电信科学》 2018年第8期109-118,共10页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61431001)~~
关键词 集中式接入网 基站处理资源分配 用户业务类型 Fisher分割方法 资源分配均衡策略 centralized radio access network base station processing resource allocation user service type Fisherpartition method resource allocation balancing strategy
  • 相关文献

参考文献7

二级参考文献83

  • 1Peter Fingar.王灵俊.云计算:21世纪的商业平台.北京:电子工业出版社.2009.
  • 2Fabrizio Salvador, Pablo Martin, De Holan, et al. Cracking the code of mass customization.MIT Sloan Management Review, 2009,50(3):70-78.
  • 3Richard T G, Charles A W. Maximizing customer value via mass customized e-consumer services. Business Horizons,2007 (50): 123-132.
  • 4Zhou Y, Liu H, Pan Z, et ol. Two-stage cooperative multicast transmission with optimized power consumption and guaranteed coverage. IEEE Journal on Selected Areas in Communications, 2013(99):1-11.
  • 5Huang L, Zhou Y, Han X, et ol. Distributed coverage optimization for small cell clusters using game theory. Proceedings of IEEE WCNC 2013, Shanghai, China, Apr 2013.
  • 63GPP TS 36.814 V9.0.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Further Advancements for E-UTRA Physical Layer Aspects, 2010.
  • 7中国移动通信研究院.C.RAN无线接人网绿色演进白皮书,2010.
  • 8Perez-Romero J, Salient O, Agusti R, et al. Common radio resource management: functional models and implementation requirements. Proceedings of IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, Berlin, Germany, 2005.
  • 9Pillekeit A, Derakhshan F, Mtiller-Clostermann B. Modeling of common radio resource management scenarios. Proceedings of the 2007 Spring Simulaiton Muhiconference-Volume 1: Society for Computer Simulation International, Norfolk, Virginia, USA, 2007:205-210.
  • 10Piamrat K, Viho C, Ksentini A, et O1. Resource management in mobile heterogeneous networks: state of the art and challenges. Institut De Recherche En Informatique Et Systemes Aleatoires Technical Report 6459, Feb 2008.

共引文献120

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部