期刊文献+

基于粒子群优化算法的5G网络切片功能迁移机制 被引量:2

5G network slicing function migration mechanism based on particle swarm optimization algorithm
下载PDF
导出
摘要 在5G的多应用场景中,数据流量经常出现剧增的情况,网络切片中虚拟机资源可能无法满足用户正常需求。鉴于此,提出了一种以负载均衡为目标的网络切片功能迁移机制。该机制基于粒子群优化算法,将虚拟机模拟成粒子,每次迁移过程中,将所有的粒子分成若干个子群,在群内和群间同时应用粒子群优化算法,参照历史最优解和当前全局最优解更新粒子位置,通过选取标记因子较小的粒子实时比较合适度等参数确定最佳目标粒子,完成迁移过程,该机制既提高了收敛速度,又提高了算法精度。通过与其他迁移方法比较,结果表明,所提迁移机制具有精度高、收敛快的优点,并能提升资源的使用效率,降低了数据中心的能耗,具有较好的自适应性。 In multi-application scenarios of 5G, data traffic often increases dramatically. Virtual machine resources in network slicing may not meet the normal needs of users. In view of this, a network slicing function migration mechanism aiming at load balancing was proposed. The mechanism simulates the virtual machine into particles based on particle swarm optimization algorithm. In the process of migration, all particles were divided into several subgroups, and particle swarm optimization algorithm was applied within and among groups. According to the his-torical optimal solution and the current global optimal solution, the particle location was updated, and the best target particles were determined by selecting the smaller particle size of the particle in real time. The mechanism not only improves the convergence speed, but also improves the accuracy of the algorithm. Compared with other migration methods, the results show that the proposed migration mechanism has the advantages of high accuracy and fast con-vergence. And it can also improve the efficiency of resource utilization, reduce the energy consumption of data cen-ter, and has better adaptability.
作者 陈强 刘彩霞 李凌书 CHEN Qiang;LIU Caixia;LI Lingshu(National Digital Switching System Engineering and Techn)ological R&D Center,Zhengzhou 450002,China;National Engineering Laboratory for Mobile Network Security,Beijing 100876,China)
出处 《网络与信息安全学报》 2018年第8期47-55,共9页 Chinese Journal of Network and Information Security
基金 国家高技术研究发展计划基金资助项目("863"计划)(No.2014AA01A701) 国家自然科学基金资助项目(No.61521003) 科技部支撑计划基金资助项目(No.2014BAH30B01)~~
关键词 功能迁移 粒子群算法 网络切片 5G function migration particle swarm optimization algorithm network slicing 5G
  • 相关文献

参考文献5

二级参考文献17

共引文献39

同被引文献7

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部