期刊文献+

陶瓷膜表面缺陷的表征与分类研究 被引量:3

Characterization and Classification of Surface Defects in Ceramic Films
下载PDF
导出
摘要 陶瓷膜种类多而杂,对陶瓷膜缺陷的检测则涉及到其表面的缺陷检测(支撑体层),而机器视觉的发展和运用使表面缺陷检测变得更加简单且智能化.文章基于陶瓷膜表面存在的划痕、裂纹、落渣、凹坑4种缺陷,运用MATLAB的图像处理技术和BP神经网络分类对陶瓷膜的表面缺陷进行提取分析和分类,结果表明,BP神经网络分类对陶瓷膜表面缺陷识别的正确率达到78.125%. The types of ceramic films are numerous and complex.The defect detection of them involves the surface detection on the support layer,which becomes easier and more intelligent based on the development and application of machine vision.In this paper,MATLAB image processing techniques and BP neural network classification method were used to detect,analyze and classify the surface defects of ceramic films according to the scratches,cracks,dregs,and pit.The experiments show that the accuracy of the surface defects of the ceramic film by BP neural network reached 78.125%.
作者 孙进 王宁 孙傲 丁煜 SUN Jin;WANG Ning;SUN Ao;DING Yu(College of Mechanical Engineering,Yangzhou University,Yangzhou 225127,China;Shuren High School in Yangzhou,Yangzhou 225001,China)
出处 《徐州工程学院学报(自然科学版)》 CAS 2018年第3期76-79,共4页 Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
基金 国家自然科学基金项目(51475409) 江苏省"六大人才高峰"高层次人才项目(JXQC-030) 扬州市市校合作项目(YZ2016244) 扬州大学江都高端装备工程技术研究院开放课题(YDJD201706)
关键词 机器视觉 陶瓷膜表面缺陷 BP神经网络 MATLAB machine vision ceramic film surface defects BP neural network MATLAB
  • 相关文献

参考文献5

二级参考文献34

共引文献28

同被引文献15

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部