摘要
为研究水平往复荷载下砂性地基预应力高强混凝土(PHC)管桩的抗震性能,采用有限元软件ABAQUS建立三维PHC管桩-砂土模型进行非线性分析。通过对比有限元分析结果和试验结果,验证了该模型的可靠性。通过在桩顶施加水平往复荷载,利用该有限元模型分析了PHC管桩滞回特性、位移延性、耗能能力和累积损伤,研究了轴压比、入土深度、砂土内摩擦角和孔隙比等因素对PHC管桩抗震性能的影响。计算结果表明,水平往复荷载下PHC管桩和桩周砂土逐渐产生塑性且塑性区逐渐扩大;减小轴压比或砂土孔隙比、增大入土深度或砂土内摩擦角均可改善砂性地基中PHC管桩的位移延性和耗能能力,降低PHC管桩的累积损伤,提高PHC管桩抗震性能;轴压比是影响PHC管桩抗震性能的重要因素。研究成果可为PHC管桩码头抗震设计提供参考。
To study the seismic performance of laterally loaded prestressed high-strength concrete(PHC) pipe pile embedded in sandy soil, the nonlinear finite element analysis by establishing 3D PHC pipe pile-sandy soil model on ABAQUS was conducted. The reliability of the model was validated by comparing the calculation results and experiment results. Then the analysis using the finite element model by applying horizontal cyclic loading on the pile head was carried out to further study the hysteretic characteristic, displacement ductility, energy dissipation and accumulated damage for the impact of axial compression ratio, embedded depth, internal friction angle and void ratio on the seismic performance of PHC pipe pile. Analysis results show that under horizontal cyclic loading plasticity occurs in PHC pipe pile and sandy soil around the pile and plastic areas gradually expand; By decreasing axial compression ratio or void ratio and increasing embedded depth or internal friction angle, displacement ductility and energy dissipation of PHC pipe pile can be enhanced and cumulated damage can be decreased, thus improving seismic performance of PHC pipe pile; The axial compression ratio is the significant factor which has impact on the seismic performance of PHC pipe pile. The research results can provide reference for seismic design of PHC pipe pile wharf.
作者
潘跃鹏
陶桂兰
冯刚
PAN Yue-peng,TAO Gui-lan,FENG Gang(College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, Chin)
出处
《水电能源科学》
北大核心
2018年第9期118-122,113,共6页
Water Resources and Power
基金
江苏省基础研究计划(自然科学基金)(BK20151498)
关键词
砂性地基
PHC管桩
抗震性能
桩土相互作用
有限元分析
sandy soil foundation
PHC pipe pile
seismic performance
pile-soil interaction
finite element analysis