期刊文献+

基于伴随文本信息的Web图像批量标注方法

A method for batch Web image annotation based on surrounding text information
下载PDF
导出
摘要 针对Web图像数据规模大幅增长难以管理及人工标注费时费力等问题,提出了一种仅利用伴随文本信息进行Web图像批量标注的方法。首先对图像的文本信息进行分词、去除停用词、词向量化等预处理;然后利用近邻传播算法对文本聚类,并利用TF-IDF对文档进行关键词抽取,建立候选词词典。分别定义和计算候选词与关键词、候选词与文档、候选词与聚类簇的相似度;最终选取相似度较大的候选词作为图像簇的标注。实验结果表明,基于伴随文本信息的图像标注算法在自建数据集上标注精度和宏F1值达到了88%和49%,达到了预期目标,提高了标注效率。 In order to solve the problems of large scale increasing of Web image data and the time and efforts consuming on manually annotation,this paper proposes a method of automatic annotation of Web images only based on the surrounding text information. Firstly,this method divides the text information of the image into words,then,it removes the stop words and represents words into vector forms as pretreatment. Secondly,it realizes text clustering by affinity propagation and finishes keyword extraction of documents by TF-IDF,and establishes candidate words dictionary. This method defines and calculates the similarities between candidate words and extracted keywords,candidate words and documents as well as candidate words and clusters respectively. The final image tags are several words with lager similarities selected from the candidate words. The experimental results show that the accuracy of the annotation and the value of the macro-F1 on the self-built data set are 88%and 49% by using the proposed method,which achieves the expected goals and improves the annotation efficiency.
作者 郭蕾蕾 俞璐 段国仑 陶性留 Guo Leilei;Yu Lu;Duan Guolun;Tao Xingliu(Institute of Communications Engineering,Army Engineering University of PLA,Nanjing 210007,China;Institute of Command Control Engineering,Army Engineering University of PLA,Nanjing 210007,China)
出处 《信息技术与网络安全》 2018年第9期70-75,共6页 Information Technology and Network Security
关键词 图像标注 文本聚类 伴随文本 相似度度量 关键词抽取 image annotation text clustering surrounding text similarity measure keyword extraction
  • 相关文献

参考文献3

二级参考文献59

  • 1耿焕同,蔡庆生,于琨,赵鹏.一种基于词共现图的文档主题词自动抽取方法[J].南京大学学报(自然科学版),2006,42(2):156-162. 被引量:30
  • 2Cusano C, Ciocca G, Sehettini R. Image annotation using SVM [C] ff Proc. of Int. SPIE Conf. on Imaging IV. San Jose, CA, USA, Feb. 2004 : 330-338.
  • 3Lu Zhi-wu, Horace H S I, He Qi-zhen. Context-based multi-label image annotation [C]//Proceeding of the ACM International Conference on Image and Video Retrieval. Santorini, Fira, Greece, July 2009.
  • 4Maron O, Lozano-Perez T. Multiple-instance learning for natural scene elassification[C] // Proe. of Int. Conf. on Machine Learning (ICML'98). Madison,Wisconsin,USA,July 1998..341-349.
  • 5Yang C, Dong M, Fotouhi F. Region-based image annotation through multiple instance learning[C] //Proc, of ACM Conf. on Multimedia (ACM MM'05). Singapore,Nov. 2005:435 438.
  • 6Yang C, Dong M, Hua J. Region-based image annotation using asymmetrical support vector machine-based multiple-instance learning[C]//Proc, of IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR' 06). New York, USA, June 2006 : 2057 2063.
  • 7Gustavo C, Nuno V. A database centric view of semantic image annotation and retrieval[C]//Proc, of Int. ACM SIGIR Conf. on Retrieval (ACM SIGIR~05). Salvador,Brazil, Aug. 2005:559-566.
  • 8Carneiro G, Chan A B, Moreno P J, et al. Supervised learning of semantic classes for image annotation and retrieval [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29 (3) :394-410.
  • 9Qi X, Han Y. Incorporating multiple SVMs for automatic image annotation[J]. Pattern Recognition, 2007,40 (2) : 728-741.
  • 10Tang J H, Hua X, Qi G, et al. Typicality ranking via semi-super- vised multiple-instance leaming[C] // Proc. of ACM Conf. on Multimedia ( ACM MM ' 07 ). Augsburg, Germany, Sep. 2007 : 297-300.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部