期刊文献+

共识模型用于激光诱导击穿光谱检测泥蚶重金属铜的含量 被引量:4

Consensus Modeling for Qualitative Analysis of Heavy Metal Cu in Tegillarca Granosa by LIBS Approach
下载PDF
导出
摘要 为快速检测贝类重金属的污染,采用激光诱导击穿光谱(LIBS)结合多模型共识策略来预测泥蚶重金属铜的含量.分析铜元素的LIBS特征谱线,提取铜元素的特征峰强度、面积、峰强比等变量,分别构建多元线性回归模型,以及基于铜特征光谱区域信息构建偏最小二乘模型.在这些校正的成员模型预测残差向量间,通过拉格朗日乘数法优化各成员模型的线性组合,使共识模型的均方误差和最小,从而获得各成员模型的最优权系数.经外部预测集的验证,共识模型的预测结果优于任一成员模型,预测均方根误差为20.641mg/kg,相关系数为0.835,且预测偏差仅为-0.473,表明LIBS技术结合共识模型能用于重金属的定量检测. In order to rapidly detect the heavy metal pollution in shellfish, the contents of heavy metal copper in tegillarca granosa were predicted by Laser-induced Breakdown Spectroscopy (LIBS) combined with the consensus strategy of mulit models. By analysis of LIBS copper characteristic spectral lines, the characteristics of copper peak intensity, area, peak ratio of copper's peaks, were extracted, and multivariate linear regression models were developed respectively. Besides, partial least regression model was calibrated based on copper characteristic spectra region. Among the residual vectors of these calibration member models, the Lagrange multiplier method was used to optimize the linear combination between these member models, aiming at reducing the correlation between member models and minimizing the mean squared error of the consensus model. Through external validation from the prediction set, the consensus model was performed better than that of any member models, with the root mean square prediction error of 20.641 mg/kg, as well as the correlation coefficient of 0.835, and the prediction deviation was only -0. 473. Results show that the LIBS technology combined with the consensus model can be used for the quantitative detection of heavy metals of aquatic products.
作者 郭珍珠 陈孝敬 袁雷明 陈熙 朱德华 杨硕 GUO Zhen-zhu;CHEN Xiao-jing;YUAN Lei-ming;CHEN Xi;ZHU De-hua;YANG Shuo(College of Mathematics,Physics and Electronic Information Engineering,Wenzhou University,Wenzhou,Zhejiang 325035,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2018年第8期106-111,共6页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.61705168 31571920) 温州市公益计划项目(No.S20170003)资助~~
关键词 激光诱导击穿光谱 共识模型 水产品 重金属 定量检测 Laser induced breakdown spectroscopy Consensus model Aquatic product Heavy metals Quantitative detection
  • 相关文献

参考文献3

二级参考文献35

  • 1柴冰华,赵达尊,廖宁放,杨卫平.色貌模型的人工神经网络方法的研究[J].光学技术,2005,31(1):127-129. 被引量:9
  • 2陈金忠,史金超,张晓萍.激光等离子体光谱法定量分析土壤中元素Fe和Ti[J].应用激光,2007,27(1):33-36. 被引量:8
  • 3PASQUINI C,CORTEZ J,SILVA L M C,et al.Laser induced breakdown spectroscopy[J].Journal of the Brazilian Chemical Society,,2007,18(3):463-512.
  • 4HARMON R S,DELUCIA F C,MCMANUS C E,et al.Laser-induced breakdown spectroscopy-An emerging chemical sensor technology for real-time field-portable,geochemical,mineralogical,and environmental applications[J].Applied Geochemistry,2006,21(5):730-747.
  • 5CORSI M,CRISTOFORETTI G,HIDALGO M,et al.Double pulse,calibration-free laser-induced breakdown spectroscopy:A new technique for in situ standard-less analysis of polluted soils[J].Applied Geochemistry,2006,21(5):748-755.
  • 6CHINNI R C,CREMERS D A,RADZIEMSKI L J,et al.Detection of uranium using laser-induced breakdown spectroscopy[J].Applied Spectroscopy,2009,63(11):1238-1250.
  • 7YAMAMOTO K Y,CREMERS D A,FOSTER L E,et al.Laser-induced breakdown spectroscopy analysis of solids using a long-pulse (150 ns) Q-switched Nd∶YAG laser[J].Applied Spectroscopy,2005,59(9):1082-1097.
  • 8HUSSAIN T,GONDAL M A.Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy[J].Environmental Monitoringtor and Assessment,2008,136(1-3):391-399.
  • 9ZHOU Wei-dong,LI Ke-xue,SHEN Qin-mei,et al.Optical emission enhancement using laser ablation combined with fast pulse discharge[J].Opt Express,2010,18(3):2573-2578.
  • 10EGAN W J,ANGEL S M,MORGAN S L.Rapid optimization and minimal complexity in computational neural network multivariate calibration of chlorinated hydrocarbons using Raman spectroscopy[J].Journal of Chemometrics,,2001,15(1):29-48.

共引文献31

同被引文献23

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部