期刊文献+

适用于具有多分类器的卷积神经网络训练方法 被引量:6

Method for Training Convolution Neural Network With Multiple Classifiers
下载PDF
导出
摘要 为了提升视条件而定的深度卷积网络(conditional deep learning network,CDLN)的分类准确率,提出一种多分类器联合训练的方法.在训练网络时将多个分类器的输出误差同时进行反向传播,以校正网络权重.以Le Net-5、Alex Net为基础构造神经网络CDLN-L和CDLN-A,以MNIST、CIFAR-100和Pascal Voc数据集为实验样本进行实验,网络的分类准确率均得到提升,最高提升了4.39%.实验表明,提出的联合训练方法能够提升CDLN的分类准确率. To improve the classification accuracy of convolution neural network similar to conditional deep learning network (CDLN) , a method of joint training with multiple classifiers was proposed in this paper. When training the network, all the roTor signals of the classifiers were applied to update weights by Back Propagation. In the experiments, CDLN-L and CDLN-A based on LeNet-5 and AlexNet were studied on the MINIST, CIFAR-100 and Pascal Voc databases, and an increase of 4.39% in classification accuracy was achieved. The experiments demonstrate that the proposed method can improve the accuracy of the network similar to CDLN.
作者 李建更 李立杰 张岩 王朋飞 左国玉 LI Jiangeng;LI Lijie;ZHANG Yan;WANG Pengfei;ZUO Guoyu(Faculty of Information Technology,Beijing University of Technology-,Beijing 100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2018年第10期1291-1296,共6页 Journal of Beijing University of Technology
基金 北京市自然科学基金资助项目(4162012) 国家自然科学基金资助项目(61573029)
关键词 深度学习 卷积神经网络(CNN) 视条件而定的深度卷积网络(CDLN) 多分类器 多分类器联合训练 图像分类 分类准确率 deep learning convolution neural network conditional deep learning network (CDLN) multiple classifier joint training by multiple classifiers (JTMC) image classification classification accuracy
  • 相关文献

参考文献8

二级参考文献123

  • 1KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 2DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 3ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 4BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 5ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.
  • 6SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229.
  • 7RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575.
  • 8LIN M,CHEN Q,YAN S.Network in network[J].CoRR,2013:abs/1312.4400.
  • 9SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1891-1898.
  • 10TAIGMAN Y,YANG M,RANZATO M A,et al.Deepface:closing the gap to human-level performance in face verification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1701-1708.

共引文献452

同被引文献41

引证文献6

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部