期刊文献+

Purely Hom-Lie bialgebras 被引量:3

Purely Hom-Lie bialgebras
原文传递
导出
摘要 In this paper, we first show that there is a Hom-Lie algebra structure on the set of(σ, σ)-derivations of an associative algebra. Then we construct the dual representation of a representation of a Hom-Lie algebra.We introduce the notions of a Manin triple for Hom-Lie algebras and a purely Hom-Lie bialgebra. Using the coadjoint representation, we show that there is a one-to-one correspondence between Manin triples for Hom-Lie algebras and purely Hom-Lie bialgebras. Finally, we study coboundary purely Hom-Lie bialgebras and construct solutions of the classical Hom-Yang-Baxter equations in some special Hom-Lie algebras using Hom-O-operators. In this paper, we first show that there is a Hom-Lie algebra structure on the set of(σ, σ)-derivations of an associative algebra. Then we construct the dual representation of a representation of a Hom-Lie algebra.We introduce the notions of a Manin triple for Hom-Lie algebras and a purely Hom-Lie bialgebra. Using the coadjoint representation, we show that there is a one-to-one correspondence between Manin triples for Hom-Lie algebras and purely Hom-Lie bialgebras. Finally, we study coboundary purely Hom-Lie bialgebras and construct solutions of the classical Hom-Yang-Baxter equations in some special Hom-Lie algebras using Hom-O-operators.
出处 《Science China Mathematics》 SCIE CSCD 2018年第9期1553-1566,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 11471139) Natural Science Foundation of Jilin Province (Grant No. 20170101050JC) Nan Hu Scholar Development Program of Xin Yang Normal University
关键词 Horn-Lie algebras Manin triples purely Horn-Lie bialgebras classical Hom-Yang-Baxter equations Hom 代数学 数学结构 三元组 证明 构造 集合 方程
  • 相关文献

同被引文献2

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部