摘要
将三维荧光光谱与多维偏最小二乘法结合,建立同时定量分析水溶液中苯并[a]芘和苯并[b]荧蒽浓度的数学模型。配置不同浓度苯并[a]芘和苯并[b]荧蒽(浓度范围均为1~10×10-7g/L)的混合溶液样品,利用荧光分光光度计采集所有样品的三维荧光光谱。在研究其单组分及混合组分溶液三维荧光特性的基础上,基于多维偏最小二乘法建立同时分析水中苯并[a]芘和苯并[b]荧蒽浓度的数学模型。对于水中的苯并[a]芘,其预测浓度与实际浓度相关系数为0.979,预测标准偏差为6.02×10-7g/L;对水中苯并[b]荧蒽,其预测浓度与实际浓度相关系数为0.952,预测标准偏差为7.76×10-7g/L。该研究为基于激光诱导荧光检测土壤环境中的苯并[a]芘和苯并[b]荧蒽提供理论和试验基础。
Simultaneous quantitative analysis models of benzo[a]pyrene and benzo[b]fluoranthene were established in aqueous solution combining three dimensional fluorescence spectroscopy with N-way partial least squares. 18 mixed solution samples with different mass concentration ratios(The concentrations of benzo[a]pyrene and benzo[b]fluoranthene were 1^10×10^-7g/L)were prepared, and three dimensional fluorescence spectra of all samples were collected by the LS-55 fluorescencespectrophotometer(PerkinElmer, USA). Based on the three-dimensional fluorescence characteristics of single component and mixed solution, quantitative analysis models of benzo[a]pyrene and benzo[b]fluoranthene were established in water using N-waypartial least squares. For the benzo[a]pyrene in water, the correlation coefficient between the predicted and actual concentration is0.979, and the predicted standard deviation is 6.02×10^-7g/L; for the benzo[b]fluoranthene in water, the correlation coefficient between the predicted and actual concentration is 0.952, and the predicted standard deviation is 7.76×10^-7g/L. This study provides a theoretical and experimental basis for the detection of benzo[a]pyrene and benzo[b]fluoranthene in soil environments by laser-induced fluorescence.
作者
王双
连增艳
石聚宇
王威
鲍秀君
杨仁杰
WANG Shuang;LIAN Zeng-yan;SHI Ju-yu;WANGWei;BAO Xiu-jun;YANG Ren-jie(College of Engineering and Technology,TianjinAgricultural University,Tianjin 300384,China)
出处
《天津农学院学报》
CAS
2018年第3期74-77,共4页
Journal of Tianjin Agricultural University
基金
国家自然科学基金面上项目(41771357)
天津市应用基础与前沿技术研究计划项目(14JCYBJC30400)
关键词
三维荧光谱
苯并[A]芘
苯并[b]荧蒽
水
多维偏最小事乘法
three-dimensional fluorescence spectroscopy
benzo[a]pyrene
benzof[b]fluoranthene
water
N-way partial leastsquares