期刊文献+

基于多因素Logistic回归分析的废旧物资处理系统设计与实现 被引量:3

Design and Implementation of Waste-Materials Processing System Based on Logistic Regression Analysis of Multi-Factors
下载PDF
导出
摘要 废旧物资可以视为第二资源,废旧物资的合理回收利用可以大幅度降低生产成本,节约物资耗损,对构建环境友好型社会具有积极意义。本文针对目前废旧物资处理过程中出现的信息化水平失衡现象,综合权衡多个影响因素,设计并实现了一款基于多因素Logistic回归分析的废旧物资处理系统,采用多因素Logistic回归分析定量分析废旧物资处理机制与多影响因素之间的概率型非线性回归关系。该系统采用B/S架构,MVC开发模式进行整体架构设计,采用ASP.NET语言实现动态Web网页,采用协同过滤技术和Apriori算法进行废旧物资处理个性化推荐和数据挖掘。平台设计完成后,实际运行表明平台整体运行稳定,对提高废旧物资信息化处理水平具有积极意义。 The use of waste materials can be regarded as the second resource, the reasonable recycling and utili zation can greatly reduce production costs, saving material consumption, to build an environmentfriendly society has a positive significance. According to the imbalance of information level in the process of waste materials proc essing, this paper designs and realizes a wastematerials processing system based on logistic regression analysis of multiple factors. MultiFactor Logistic regression analysis was used to quantitatively analyze the probabilistic nonlinear regression relationship between wastematerials processing mechanism and many influencing factors. The system uses B/S architecture, MVC development mode for the overall architecture design, the use of ASP.NET lan guage to achieve dynamic web pages, using collaborative filtering technology and apriori algorithm for waste mate rials processing personalized recommendations and data mining. After the design of the platform, the actual opera tion shows that the whole platform is stable and has positive significance for improving the information processing level of waste materials.
作者 席卫华 XI Wei-hua(Jiangsu United Vocational and Technical College, Wuxi, Jiangsu 21400)
出处 《软件》 2018年第9期188-193,共6页 Software
关键词 多因素LOGISTIC回归分析 废旧物资处理 B/S架构 协同过滤 数据挖掘 Multifactor logistic regression analysis Waste materials processing B/S architecture Collaborativefiltering Data mining
  • 相关文献

参考文献10

二级参考文献49

共引文献80

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部