期刊文献+

基于RNN和CNN的蒙汉神经机器翻译研究 被引量:7

Mongolian-Chinese Neural Machine Translation Based on RNN and CNN
下载PDF
导出
摘要 该文探讨了基于RNN和CNN的蒙汉神经机器翻译模型,分别采用蒙古语的词模型、切分模型和子词模型作为翻译系统的输入信号,并与传统的基于短语的SMT进行了比较分析。实验结果表明,子词模型可以有效地提高RNN NMT和CNN NMT的翻译质量。同时实验结果也表明,基于RNN的蒙汉NMT模型的翻译性能已经超过传统的基于短语的蒙汉SMT模型。 In this paper,Mongolian-Chinese neural machine translation model based on RNN and CNN is discussed.Mongolian word model,segmentation model and subword model are used as input signals of the translation system.We compare our method with the traditional phrase-based SMT.Experimental results show that the subword model can effectively improve the quality of NMT and the RNN-based Mongolian-Chinese NMT model has surpassed the traditional phrase-based SMT model.
作者 包乌格德勒 赵小兵 BAO Wugedele;ZHAO Xiaobing(School of Computer,Hohhot Minzu College,Hohhot,Inner Mongolia 010051,China;School of Information Engineering Minzu University of China,Beijing 100081,China)
出处 《中文信息学报》 CSCD 北大核心 2018年第8期60-67,共8页 Journal of Chinese Information Processing
基金 国家语委科研项目(YB125-89)
  • 相关文献

参考文献1

二级参考文献60

  • 1刘挺,李维刚,张宇,李生.复述技术研究综述[J].中文信息学报,2006,20(4):25-32. 被引量:13
  • 2International Standards for Language Engineering[DB/ OL]. http://www, ilc. cnr. it/EAGLES96/isle/ISI.E D14.2. zip. 2003.
  • 3Y Shiwen. Automatic evaluation of output quality for Machine Translation systems[J]. Machine Transla tion. 1993, 8: 117-126.
  • 4M Zhou, B Wang, S Liu, et al. Diagnostic evaluation of machine translation systems using automatically constructed linguistic check-points[C]//Proceedings of the 22nd International Con{erence on Computational Linguistics-Volume 1. Stroudsburg, PA, USA: 2008: 1121-1128.
  • 5C Tillmann, S Vogel, H Ney, et al. Accelerated DP Based Search for Statistical Translation[A]. In Euro-pean Conf. on Speech Communication and Technolo- gy. 1997: 2667-2670.
  • 6M Snover, B Dorr, R Schwartz, et al. A Study of Translation Edit Rate with Targeted Human Annota- tion[C]//Proceedings of the 7th Conference of the As- sociation for Machine Translation in the Americas. 2006: 223-231.
  • 7G Leusch, N Ueffing, H Ney. CDER: Efficient MT Evaluation Using Block Movements[C]//Proceedings of EACL. 2006: 241-248.
  • 8D Lopresti, A Tomkins. Block Edit Models for Ap- proximate String Matching[J]. Theoretical Computer Science. 1997, 181: 159-179.
  • 9K Papineni, S Roukos, T Ward, et al. BLEU: a Method for Automatic Evaluation of Machine Transla- tion[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Strouds- burg, PA, USA, 2002: 311-318.
  • 10C Callison-Burch, M Osborne, P Koehn. Re-evalua- ting the Role of BLEU in Machine Translation Re- search[C]//Proceedings of the llth Conference of the European Chapter of the Association for Computational I.inguistics. 2006: 249-256.

共引文献20

同被引文献53

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部