期刊文献+

TFT-LCD模块组装调度问题的改进灰狼优化算法 被引量:5

Improved Grey Wolf Optimizer for the TFT-LCD Module Assembly Scheduling Problem
下载PDF
导出
摘要 随着半导体产业的快速发展产生了很多重要的生产计划问题,其中,TFT-LCD(薄膜晶体管液晶显示器)属于资金和技术密集型产业,面对激烈的市场竞争亟需提高生产力.提出一种改进灰狼优化算法求解以最小化最大完工时间为优化目标的TFT-LCD模块组装调度问题,针对该问题特点对基本灰狼优化算法进行了一系列改进,包括工序插入式方法解码,机器选择部分采用一种全局搜索、局部搜索和随机产生相结合的初始化方法,基于搜索的方法进行工序排序部分初始化,以及均匀交叉操作和进化种群动态操作.同时,对所设计的改进灰狼优化算法的计算复杂度和收敛性进行了分析.由于该问题与柔性作业车间调度问题(FJSP)比较相似,通过对FJSP问题的不同规模基准算例的仿真实验,验证了算法有效性.另外,通过对实际生产活动中的一个TFT-LCD模块组装调度问题的测试,进一步表明本文提出的算法解决真实TFT-LCD模块组装调度问题的实用性和有效性. The semiconductor industry has grown rapidly and subsequently production planning problems have raised many important research issues. TFT-LCD manufacturing is a capital and technology intensive industry. Facing the fierce competitive pressures, it is important to enhance productivity. An improved grey wolf optimizer ( IGWO) was proposed in this paper to solve the TFT-LCD module assembly scheduling problem with the makespan criterion. Considering the characteristics of the problem, the left-shift-based decoding was used to generate an active schedule. In generation of initial population, an initalizafion method which combined with global search, local search and random generation was designed for the machines selection part, and a search-based initialization method was developed for the operations sequencing part,respectively. Uniform crossover operator and evolutionary population dynamics (EPD) method were also employed. Meanwhile, we provided the computation complexity analysis and convergence analysis of the proposed IGWO algorithm. As the TFT-LCD module assembly production is a flexible job-shop scheduling problem, numerical experiments and comparisons based on a set of benchmark instances from Kacem data and BRdata demonstrate the validity of this approach. Furthermore, the proposed IGWO was used to solve a real-world TFT-LCD module assembly scheduling case and its applicability is verified.
作者 姚远远 叶春明 杨枫 YAO Yuan-yuan;YE Chun-ming;YANG Feng(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第10期2146-2153,共8页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(71271138)资助 上海理工大学科技发展项目(16KJFZ028)资助 上海市高原学科项目"管理科学与工程"项目(GYXK1201)资助
关键词 改进灰狼优化算法 TFT-LCD模块组装调度 柔性作业车间调度 最小化最大完工时间 收敛性分析 improved grey wolf optimizer TFT-LCD module assembly scheduling flexible job-shop scheduling makespan minimization convergence analysis
  • 相关文献

参考文献3

二级参考文献15

  • 1杨晓梅,曾建潮.遗传算法求解柔性job shop调度问题[J].控制与决策,2004,19(10):1197-1200. 被引量:35
  • 2安晶,秦珂.一种基于遗传算法的车间调度算法求解[J].盐城工学院学报(自然科学版),2007,20(1):33-36. 被引量:5
  • 3张超勇,饶运清,李培根,邵新宇.柔性作业车间调度问题的两级遗传算法[J].机械工程学报,2007,43(4):119-124. 被引量:105
  • 4席卫东,乔兵,朱剑英.基于改进遗传算法的柔性作业车间调度[J].哈尔滨工业大学学报,2007,39(7):1151-1153. 被引量:13
  • 5ZHANG H P,GEN M.Multistage-based genetic algorithm for flexible job-shop scheduling problem[J].Complexity International,2005,11:223-232.
  • 6MASTROLILLI M,GAMBARDELLA L M.Effective neighborhood functions for the flexible job shop problem[J].Journal of Scheduling,2000,3(1):3-20.
  • 7GAO L,PENG C Y,ZHOU C,et al.Solving flexible job-shop scheduling problem using general particle swarm optimization[C]//Proceedings of The 36th International Conference on Computers & Industrial Engineering,Taipei,China.2006:3 018-3 027.
  • 8KACEM Ⅰ.Genetic algorithm for the flexible job-shop scheduling problem[J].IEEE International Conference on Systems,Man.and Cybernetics,2003,4:3 464-3 469.
  • 9KACEM I,HAMMADI S,BORNE P.Approach by localization and multi-objective evolutionary optimization for flexible job-shop scheduling problems[J].IEEE Transactions on Systems,Man.and Cybernetics,Part C,2002,32(1):408-419.
  • 10HO N B,TAY J C.GENACE:An efficient cultural algorithm for solving the flexible job-shop problem[C]//Proceedings of 2004 Congress on Evolutionary Computation,Piscataway,IEEE,2004:1 759-1 766.

共引文献191

同被引文献54

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部