摘要
主要研究N(2,2,0)代数的半群交换性和广义交换性,讨论了N(2,2,0)代数的右正则半群与内正则半群的关系。得到了N(2,2,0)代数的几个结论:具有幂零半群一定是交换半群,任意一个N(2,2,0)代数(S,*,Δ,0)的半群(S,*,0)和(S,Δ,0)都是条件交换半群。
This study mainly concentrates on the commutativity and the generalized commutativity of semigroup of N(2,2,0) algebra. Relationships between regular R-commutative semigroup and intra-regular semigroups are considered. Main conclusions of this study are: nilpotent semigroup must be a commutative semigroup. Any semigroup(S, * ,0) and (S,△,0) of N(2,2,0) algebra (S, * ,△,0) are conditional exchange semigroups.
作者
邓方安
DENG Fang-an(School of Mathematics and Computer Science,Shaanxi University of Technology,Hanzhong 723000,China)
出处
《陕西理工大学学报(自然科学版)》
2018年第5期71-74,共4页
Journal of Shaanxi University of Technology:Natural Science Edition
基金
国家自然科学基金资助项目(11305097)
关键词
N(2
2
0)代数
广义交换性
内正则元
内正则半群
N ( 2,2,0 ) algebra
generalized commutative
intra-regular element
intra-regularsemigroups