摘要
针对存在执行器故障的一类仿射非线性系统,基于自适应动态规划方法,提出了一种新型的容错控制器。利用故障观测器估计执行器故障,并利用故障信息构建一个改进型的性能指标函数,将容错控制问题转化为最优控制问题。同时使用策略迭代(PI)算法,通过构造评价神经网络来求解HJB方程,获得近似最优容错控制律,并且基于李雅普诺夫函数,证明该容错控制器可以确保闭环系统渐近稳定。最后,通过仿真验证了该方法的有效性。
A novel Fault Tolerant Control (FTC) scheme is developed based on Adaptive Dynamic Programming (ADP) for a class of affine nonlinear systems with actuator failures. The estimated actuator failure from a fault observer is utilized to construct an improved performance index function, so the FTC problem can be transformed into an optimal control problem. By using Policy Iteration ( PI ) algorithm, the Hamihon-Jacobi-Bellman equation can be solved by constructing a critic neural network. Then, the approximate optimal controller can be derived directly. The closed-loop system is guaranteed to be asymptotically stable via the Lyapunov stability theorem. Finally, an example is presented to demonstrate the effectiveness of the proposed method.
作者
戴姣
刘春生
孙景亮
DAI Jiao;LIU Chun-sheng;SUN Jing-liang(Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处
《电光与控制》
北大核心
2018年第10期84-88,共5页
Electronics Optics & Control
基金
中央高校基本科研业务费专项资金资助
南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20170304
kfjj20170320)
关键词
故障容错控制
自适应动态规划
神经网络
故障估计
Fault-Tolerant Control ( FTC )
Adaptive Dynamic Programming (ADP)
neural network
fault estimation