期刊文献+

一种基于自适应免疫粒子群算法的多峰函数优化 被引量:5

A Blind Source Separation Algorithm Based on Immune Algorithm
下载PDF
导出
摘要 粒子群算法是一种典型的智能优化算法,被广泛应用于各个领域,但算法本身也存在着在收敛后期容易陷入局部最优的缺陷,针对这一问题,借鉴免疫系统自我调节机制,引入浓度调节机制和免疫操作机制,提出一种基于免疫机理的粒子群算法,提高算法粒子群体的多样性,根据种群粒子亲和度和浓度群自适应调整搜索粒子的速度和方向,提高算法性能。将算法用于典型多峰函数极值求解,仿真结果表明,算法具有较好的全局收敛性和收敛精度,具有良好的优化性能。 This paper uses the immune system self-regulation mechanism,introduces the concentration regulation mechanism and the immune operation mechanism,and proposes a kind of exemption based on the immune system.The particle swarm optimization(PSO) of the epidemic mechanism improves the diversity of the particle swarm.It adaptively adjusts the velocity and direction of the particle according to the particle affinity and concentration group,and improves the performance of the algorithm.The algorithm is used to solve the extreme value of the typical multi peak function.
作者 何庆
出处 《工业控制计算机》 2018年第10期113-115,共3页 Industrial Control Computer
关键词 粒子群算法 免疫操作 自适应搜索 多峰函数优化 particle swarm optimization immune operation adaptive search multi peak function optimization
  • 相关文献

参考文献10

二级参考文献85

  • 1曹春红,张永坚,李文辉.杂交粒子群算法在工程几何约束求解中的应用[J].仪器仪表学报,2004,25(z3):397-400. 被引量:6
  • 2郑日荣,毛宗源,罗欣贤.基于欧氏距离和精英交叉的免疫算法研究[J].控制与决策,2005,20(2):161-164. 被引量:31
  • 3杜海峰,公茂果,刘若辰,焦李成.自适应混沌克隆进化规划算法[J].中国科学(E辑),2005,35(8):817-829. 被引量:28
  • 4陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 5Kim J W, Integrating artificial immune algorithms for intrusion detection[D]. PhD dissertation, University of London, 2002.
  • 6Whitley L D, Starkweather T, Fuquay D. Scheduling problems and traveling salesman: the genetic edge recombination operator[C]// Proceedings of the 3rd International Conference on Genetic Algorithms. San Francisco:Morgan Kauffmann, 1989 : 133-140.
  • 7Reinelt G. TSPLIB-a traveling salesmarr problem library[J].ORSA Journal on Computing, 1991, 3(4) : 376-384.
  • 8Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperative learning approach to the traveling agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(1) :29-41.
  • 9Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[C]// Proceedings of IEEE International Conference on Evolutionary Computation. Nagoya, Japan: IEEE Press, 1996:622-627.
  • 10Stutzle T, Hoos H. Max-min ant system and local search for the traveling salesman problem [C]// Proceedings of the 4th International Conference on Evolutionary Computation. Indianapolis: IEEE Press, 1997: 309-314.

共引文献83

同被引文献55

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部