期刊文献+

智能化调参的XGBOOST算法及其在电信营销中的应用 被引量:1

Intelligent Parameter Adjustment XGBOOST and Its Application in Telecom Marketing
下载PDF
导出
摘要 XGBOOST是一种集成学习算法,通常采用网格法调参,参数优化幅度有限;提出连续量子粒子群算法,并将其引入XGBOOST的调参过程,得到全局优化参数,从而提升XGBOOST算法性能;同时将该算法应用于电信精准营销案例——运营商用户换机预测场景中,得到了基于连续量子粒子群算法调参的XGBOOST用户换机预测模型,与基于网格法调参的XGBOOST相比,该模型获得了更高的用户换机的预测准确度。 XGBOOST is an ensemble learning algorithm,which usually uses grid method to adjust parameters and the parameter optimi- zation scope is limited. The algorithm of parameters adjusting based on Continuous Quantum-inspired Particle Swarm Optimi- zation is proposed,which improves the performance of XGBOOST. This model has been applied in a case of telecom precision marketing,the prediction of user equipment replacing.Compared with XGBOOST based on Grid parameter adjustment method, the model achieves higher prediction accuracy of user equipment replacing.
作者 成晨 程新洲 张恒 韩玉辉 Cheng Chen;Cheng Xinzhou;Zhang Heng;Han Yuhui(China Unicom Network Technology Research Institute,Beijing 100048,China)
出处 《邮电设计技术》 2018年第10期20-24,共5页 Designing Techniques of Posts and Telecommunications
关键词 连续量子粒子群 XGBOOST 机器学习 电信精准营销 Continuous quantum-inspired particle swarm optimization (CQPSO) XGBOOST Machine learning Telecom precision marketing
  • 相关文献

参考文献5

二级参考文献32

  • 1Quinlan J R. Induction of decision tree[J]. Machine Learning, 1986, (1) :81 - 106.
  • 2Quinlan J R. C4.5 Programs for Machine Leaming[M].San Mateo: Morgan kaufmann Publishers, Inc, 1993.
  • 3Thomas G. Dietterich. Machine learning research: Four current directions[J]. AI Magazine, 1997, 18(4):97-136
  • 4L. Breiman. Bagging predictors [J]. Machine Learning, 1996,24(2) : 123-140
  • 5Lars Kai Hansen, Peter Salamon. Neural network ensembles [J].IEEE Trans. Pattern Analysis and Machine Intelligence, 1990,12(10) : 993-1001
  • 6Anders Krogh, Jesper Vedelsby. Neural network ensembles, cross validation, and active learning [G]. In: G. Tesauro, D. S.Touretzky, T. K. Leen, eds. Advances in Neural Information Processing Systems 7. Cambridge MA: MIT Press, 1995. 231-238
  • 7David W. Opitz, Jude W. Shavlik. Actively searching for an effective neural-network ensemble [J]. Connection Science,1996, 8(3): 337-353
  • 8B. Rosen. Ensemble learning using decorated neural networks[J]. Connection Science, 1996, 8(3): 373-384
  • 9Derek Partridge, W. B. Yates. Engineering multiversion neuralnet systems[J]. Neural Computation, 1996, 8(4) : 869-893
  • 10Zhi-Hua Zhou, Jianxin Wu, Wei Tang. Ensembling neural networks: Many could be better than all [J]. Artificial Intelligence, 2002, 137(1/2): 239-263

共引文献1819

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部