期刊文献+

High efficiency visible-light-driven Fe_2O_3-xS_x/S-doped g-C_3N_4 heterojunction photocatalysts: Direct Z-scheme mechanism 被引量:5

High efficiency visible-light-driven Fe_2O_3-xS_x/S-doped g-C_3N_4 heterojunction photocatalysts: Direct Z-scheme mechanism
原文传递
导出
摘要 Several nanoporous Fe2 O3-xSx/S-doped g-C3 N4(CNS) Z-scheme hybrid heterojuctions have been successfully synthesized by one-pot in situ growth of the Fe2O3-xSx particles on the surface of CNS. The characterization results show that S-doping in the g-C3 N4 backbone can greatly enhance the charge mobility and visible light harvesting capability. In addition, porous morphology of hybrid composite provides available open pores for guest molecules and also improves light absorbing property due to existence of multiple scattering effects. More importantly, the Fe2 O3-xSx nanoparticles formed intimate heterojunction with CNS and developed the efficient charge transfer by extending interfacial interactions occurred at the interfaces of both components. It has been found that the Fe2 O3-xSx/CNS composites have an enhanced photocatalytic activity under visible light irradiation compared with isolated Fe2 O3 and CNS components toward the photocatalytic degradation of methylene blue(MB). The optimal loaded Fe2 O3-xSx value obtained is equal to 6.6 wt% that provided 82% MB photodegradation after 150 min with a reaction rate constant of 0.0092 min(-1) which was faster than those of the pure Fe2 O3(0.0016 min(-1))and CNS(0.0044 min(-1)) under the optimized operating variables acquired by the response surface methodology. The specific surface area and the pore volume of Fe2 O3(6.6)/CNS hybrid are 33.5 m2/g and0.195 cm3/g, which are nearly 3.8 and 7.5 times greater compared with those of the CNS, respectively. The TEM image of Fe2 O3(6.6)/CNS nanocomposite exhibits a nanoporous morphology with abundant uniform pore sizes of around 25 nm. Using the Mott-Schottky plot, the conduction and valence bands of the CNS are measured(at pH = 7) equal to-1.07 and 1.48 V versus normal hydrogen electrode(NHE), respectively.Trapping tests prove that ·OH-and ·O2-radicals are major active species in the photocatalytic reaction.It has been established that formation of the Z-scheme Fe2 O3(6.6)/CNS heterojunction between CNS and Fe2 O3 directly produces ·OH as well as ·O2-radicals which is consistent with the results obtained from trapping experiments. Several nanoporous Fe2 O3-xSx/S-doped g-C3 N4(CNS) Z-scheme hybrid heterojuctions have been successfully synthesized by one-pot in situ growth of the Fe2O3-xSx particles on the surface of CNS. The characterization results show that S-doping in the g-C3 N4 backbone can greatly enhance the charge mobility and visible light harvesting capability. In addition, porous morphology of hybrid composite provides available open pores for guest molecules and also improves light absorbing property due to existence of multiple scattering effects. More importantly, the Fe2 O3-xSx nanoparticles formed intimate heterojunction with CNS and developed the efficient charge transfer by extending interfacial interactions occurred at the interfaces of both components. It has been found that the Fe2 O3-xSx/CNS composites have an enhanced photocatalytic activity under visible light irradiation compared with isolated Fe2 O3 and CNS components toward the photocatalytic degradation of methylene blue(MB). The optimal loaded Fe2 O3-xSx value obtained is equal to 6.6 wt% that provided 82% MB photodegradation after 150 min with a reaction rate constant of 0.0092 min(-1) which was faster than those of the pure Fe2 O3(0.0016 min(-1))and CNS(0.0044 min(-1)) under the optimized operating variables acquired by the response surface methodology. The specific surface area and the pore volume of Fe2 O3(6.6)/CNS hybrid are 33.5 m2/g and0.195 cm3/g, which are nearly 3.8 and 7.5 times greater compared with those of the CNS, respectively. The TEM image of Fe2 O3(6.6)/CNS nanocomposite exhibits a nanoporous morphology with abundant uniform pore sizes of around 25 nm. Using the Mott-Schottky plot, the conduction and valence bands of the CNS are measured(at pH = 7) equal to-1.07 and 1.48 V versus normal hydrogen electrode(NHE), respectively.Trapping tests prove that ·OH-and ·O2-radicals are major active species in the photocatalytic reaction.It has been established that formation of the Z-scheme Fe2 O3(6.6)/CNS heterojunction between CNS and Fe2 O3 directly produces ·OH as well as ·O2-radicals which is consistent with the results obtained from trapping experiments.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第9期1511-1525,共15页 材料科学技术(英文版)
基金 financial supports from the Research Office of Amirkabir University of Technology (Tehran Polytechnic)
关键词 Visible light irradiation Nanophotocatalyst in situ S-doping Z-scheme heterojunction Response surface methodology(RSM) Visible light irradiation Nanophotocatalyst in situ S-doping Z-scheme heterojunction Response surface methodology(RSM)
  • 相关文献

同被引文献66

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部