摘要
Transcription factors (TFs) play vital roles in various biological processes by binding to cis-acting elements to control expressions of their target genes. The MYB TF BplMYB46, from Betula platyphylla, is involved in abiotic stress responses and secondary wall deposition. In the present study, we used a TF-centered yeast onehybrid technology (TF-centered YIH) to identify the cis- acting elements bound by BplMYB46. We screened a shortinsert random library and identified three cis-elements bound by BplMYB46: an E-box (CA(A/T/C)(A/G/C)TG) and two novel motifs, a TO-box (T(GIA)TCG(C/G)) and a GT-box (A(G/T)T(AIC)GT(T/G)C). Chromatin immunoprecipitation (CHIP) and effector-reporter coexpression assays inNicotiana tabacum confirmed binding of BplMYB46 to the TC-box, GT-box, and E-box motifs in the promoters of the phenylalanine ammonia lyase (PAL), peroxidase (POD), and superoxide dismutase (SOD) genes, which function in abiotic stress tolerance and secondary wall biosynthesis. This finding improves our understanding of potential regulatory mechanisms in the response to abiotic stress and secondary wall deposition of BplMYB46 in B. platyphylla.
Transcription factors (TFs) play vital roles in various biological processes by binding to cis-acting elements to control expressions of their target genes. The MYB TF BplMYB46, from Betula platyphylla, is involved in abiotic stress responses and secondary wall deposition. In the present study, we used a TF-centered yeast onehybrid technology (TF-centered YIH) to identify the cis- acting elements bound by BplMYB46. We screened a shortinsert random library and identified three cis-elements bound by BplMYB46: an E-box (CA(A/T/C)(A/G/C)TG) and two novel motifs, a TO-box (T(GIA)TCG(C/G)) and a GT-box (A(G/T)T(AIC)GT(T/G)C). Chromatin immunoprecipitation (CHIP) and effector-reporter coexpression assays inNicotiana tabacum confirmed binding of BplMYB46 to the TC-box, GT-box, and E-box motifs in the promoters of the phenylalanine ammonia lyase (PAL), peroxidase (POD), and superoxide dismutase (SOD) genes, which function in abiotic stress tolerance and secondary wall biosynthesis. This finding improves our understanding of potential regulatory mechanisms in the response to abiotic stress and secondary wall deposition of BplMYB46 in B. platyphylla.
基金
supported by two grants from the National Natural Science Foundation of China (31470671 and 31700587)