摘要
The discovery of superconductivity in quasi-one-dimensional Cr-based pnictides A2Cr3As3(A = alkali metals) has generated considerable research interest, primarily owing to their reduced dimensionality, significant electron correlations,and possible unconventional superconductivity. The upper critical field(Hc2) provides important information on the superconducting pairing. In this paper, we first briefly overview the latest research progress on the Cr-based superconductors.Then, we introduce typical Hc2(T) behaviors of type-II superconductors in relation with the pair-breaking mechanisms.After a description of the measurement method for Hc2, we focus on the analysis of Hc2 data, especially for the temperature and angle dependence, in K2Cr3As3 crystals. The result indicates(i) an absence of Pauli-paramagnetic pair breaking for field perpendicular to the Cr3As3 chains, and(ii) a unique threefold modulation for the in-plane Hc2Φ profile. Finally we conclude with remarks on the possible unconventional superconducting pairing symmetry.
The discovery of superconductivity in quasi-one-dimensional Cr-based pnictides A2Cr3As3(A = alkali metals) has generated considerable research interest, primarily owing to their reduced dimensionality, significant electron correlations,and possible unconventional superconductivity. The upper critical field(Hc2) provides important information on the superconducting pairing. In this paper, we first briefly overview the latest research progress on the Cr-based superconductors.Then, we introduce typical Hc2(T) behaviors of type-II superconductors in relation with the pair-breaking mechanisms.After a description of the measurement method for Hc2, we focus on the analysis of Hc2 data, especially for the temperature and angle dependence, in K2Cr3As3 crystals. The result indicates(i) an absence of Pauli-paramagnetic pair breaking for field perpendicular to the Cr3As3 chains, and(ii) a unique threefold modulation for the in-plane Hc2Φ profile. Finally we conclude with remarks on the possible unconventional superconducting pairing symmetry.
作者
Guang-Han Cao
Zeng-Wei Zhu
曹光旱;朱增伟(Department of Physics,Zhejiang University,Hangzhou 310027,China;Wuhan National High Magnetic Field Center,School of Physics,Huazhong University of Science and Technology,Wuhan 430074,China)
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.11674281 and 11574097)
the Fundamental Research Funds for the Central Universities of China