期刊文献+

肌电智能轮椅控制系统设计 被引量:4

Design of the Intelligent Wheelchair Control System Based on Electromyography
原文传递
导出
摘要 为了实现轮椅多种运动状态的智能控制,设计了一种肌电臂环与安卓平台组成的肌电轮椅控制系统。通过采集不同手势动作时的人体前臂表面肌电信号,对其进行数据处理与模式识别,配合蓝牙无线通信,实现了轮椅前进、后退、左转、右转与停止五种状态的实时检测与控制。实验表明,系统响应时间短,在线识别率高,提供了一种稳定、廉价、可扩展的基于肌电信号的智能轮椅控制方案。 To realize intelligent control on multiple exercise states of the wheelchair,the myoelectric wheelchair control system composed of myoelectric arm and Android platform is designed. We collect the EMG signals of the human forearm when different gesture movements are performed to process data and recognize pattern. Through the Bluetooth wireless communication,the results are used to real-time control and monitor the wheelchair' s five states: forward,backward,left turn,right turn and stop. Experiments show that the system has short response time and high online recognition rate. It provides us a stable,cheap and scalable control scheme for the intelligent wheelchair based on EMG signals.
作者 李鑫 祁蒙 董海清 张自强 LI Xin;QI Meng;DONG Hai-qing;ZHANG Zi-qiang(College of Information Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 201418,China)
出处 《仪表技术》 2018年第9期16-19,共4页 Instrumentation Technology
关键词 智能轮椅 肌电信号 特征提取 模式识别 人机接口 intelligent wheelchair myoelectric signal feature extraction pattern recognition the manmachine in-terface
  • 相关文献

参考文献5

二级参考文献35

  • 1Geoffrey Hinton.A Practical Guide to Training Restricted Boltzmann Nachines. Neural Networks:Tricks of the Trade . 2010
  • 2Geoffrey E. Hinton,Simon Osindero,Yee-Whye Teh.A fast learning algorithm for deep belief nets. Neural Computation . 2006
  • 3Liu J,He J,Sheng X, et al.A new feature extraction method based on autoregressive power spectrum for improving sEMG classification. 35th Annual International Conference of the IEEE . 2013
  • 4Mahdavi F.A,Ahmad S.A,Marhaban M.H,et al.Surface Electromyography Disposal Based on Wavelet Transform. International Journal of Integrated Engineering . 2012
  • 5Freund Y,Haussler D.Unsupervised learning of distributions of binary vectors using two layer networks. . 1994
  • 6TURK M. Multimodal interaction: A review [J]. Pattern Recognition Letters, 2014, 36 ( 15 ) : 189-195.
  • 7XUX, ZHANGY, LUOY, etal. Robustbio-signal based control of an intelligent wheelchair [J]. Robot- ics, 2013, 2(4):187-197.
  • 8RECHY-RAMIRE E J, HUH S. A flexible bio sig- nal based HMI for hands-free control of an electric powered wheelchair [J]. International Journal of Ar- tificial Life Research, 2014, 4(1): 59-76.
  • 9YOUNG A J, SMITH L H, ROUSE E J, et al. Classification of simultaneous movements using sur- face EMG pattern recognition [J]. 1EEE Transactions on Biomedical Engineering, 2013, 60(5): 1250 1258.
  • 10BIEN Z, CHUNG M J, CHANG P H, etal. Inte- gration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units [J ]. Autonomous Robots, Springer Netherlands, 2004, 16(2): 165-191.

共引文献25

同被引文献40

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部