摘要
Yttria-reinforced copper matrix composites were prepared by dry ball milling (DBM) and wet ball milling (WBM), respectively, followed by spark plasma sintering (SPS). It is to determine which milling process is better for fabricating Cu-Y2O3 composites. It is found that Cu-Y2O3 composites synthesized by DBM exhibit better densification, mechanical and electrical properties than those by WBM. Less agglomeration of reinforcements in the bulk composites by DBM is responsible for the better perfor- mances. To further understand the reason of less agglomeration of Y2O3 in the bulks by DBM, morphologies of prepared powders were investigated and analyzed. Higher ball's impact energy and the formation of copper oxide on the matrix surface during DBM process contribute to small matrix particles, which is beneficial for less agglomeration.
Yttria-reinforced copper matrix composites were prepared by dry ball milling (DBM) and wet ball milling (WBM), respectively, followed by spark plasma sintering (SPS). It is to determine which milling process is better for fabricating Cu-Y2O3 composites. It is found that Cu-Y2O3 composites synthesized by DBM exhibit better densification, mechanical and electrical properties than those by WBM. Less agglomeration of reinforcements in the bulk composites by DBM is responsible for the better perfor- mances. To further understand the reason of less agglomeration of Y2O3 in the bulks by DBM, morphologies of prepared powders were investigated and analyzed. Higher ball's impact energy and the formation of copper oxide on the matrix surface during DBM process contribute to small matrix particles, which is beneficial for less agglomeration.
基金
financially supported by the National Key Research and Development Program of China (No. 2016YFB0301400)
the Organization Department of Jiangxi Province(No. 2012215)
the Education Department of Jiangxi Province (No. KJLD13041)
the Outstanding Doctoral Dissertation Project Fund of JXUST (No. YB2017011)