期刊文献+

基于Fg-CarNet的车辆型号精细分类研究 被引量:12

Fine-grained Classification of Car Models Using Fg-CarNet Convolutional Neural Network
下载PDF
导出
摘要 车辆型号识别在智能交通系统、涉车刑侦案件侦破等方面具有十分重要的应用前景.针对车辆型号种类繁多、部分型号区分度小等带来的车辆型号精细分类困难的问题,采用车辆正脸图像为数据源,提出一种多分支多维度特征融合的卷积神经网络模型Fg-CarNet (Convolutional neural networks for car fine-grained classification, Fg-CarNet).该模型根据车正脸图像特征分布特点,将其分为上下两部分并行进行特征提取,并对网络中间层产生的特征进行两个维度的融合,以提取有区分度的特征,提高特征表达能力,通过使用小卷积核以及全局均值池化,使在网络分类准确度提高的同时降低了网络模型参数大小.在CompCars数据集上进行验证,实验结果表明, Fg-CarNet提取的车辆特征在保证网络模型参数最小的同时,车辆型号识别率达到最高,实现了最好的分类效果. Car model recognition has very important application in intelligent transportation systems and vehicle-related criminal case detection. A multi-branch and multi-dimension feature fusion convolutional neural network(CNN) model,Fg-CarNet(convolutional neural networks for car fine-grained classification), is proposed. This model uses car frontal face images as data source, and aims to solve the classification difficulty caused by the wide variety of car models and little differentiation between some models. Based on the image feature distribution characteristic of frontal face images,the Fg-CarNet divides them into upper parts and lower parts to extract features in parallel, and then merges the features generated by middle layers of the network to extract more distinguishing features. Through using small convolution kernel and global average pooling, the classification accuracy of Fg-CarNet is improved and at the same time the size of network parameters is reduced. With CompCars dataset, experiments are carried out. The results show that the proposed method can achieve the highest recognition accuracy while keeping the smallest size of network parameters, i.e, the method can achieve the best classification result.
作者 余烨 金强 傅云翔 路强 YU Ye;JIN Qiang;FU Yun-Xiang;LU Qiang(School of Computer and Information,Hefei University of Technology,Hefei 23000)
出处 《自动化学报》 EI CSCD 北大核心 2018年第10期1864-1875,共12页 Acta Automatica Sinica
基金 安徽省重点研究与开发计划项目(1604d0802009) 安徽省自然科学基金(1708085MF158) 安徽高校省级自然科学研究项目(KJ2014ZD27)资助~~
关键词 车辆型号精细分类 卷积神经网络 多维度特征融合 分块并行 Fine-gained classification of car models convolutional neural network(CNN) multi-dimension feature fusion block parallel
  • 相关文献

参考文献5

二级参考文献180

  • 1马帅,唐世渭,杨冬青,王腾蛟.一种用于位置数据库结构调整的增量聚类算法[J].软件学报,2004,15(9):1351-1360. 被引量:5
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3Gupte S, Masoud O, Martin R F K, Papanikolopoulos N P. Detection and classification of vehicles. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 37-47.
  • 4Rad R, Jamzad M. Real time classification and tracking of multiple vehicles in highways. Pattern Recognition Letters, 2005, 26(10): 1597-1607.
  • 5Kim Z W, Malik J. Fast vehicle detection with probabilistic feature grouping and its application to vehicle tracking. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 524-531.
  • 6Sidla O, Paletta L, Lypetskyy Y, Janner C. Vehicle recognition for highway lane survey. In: Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems. Washington D.C., USA: IEEE, 2004. 531-536.
  • 7Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, USA: AAAI, 1996. 226-231.
  • 8Karypis G, Han E H, Kumar V. Chameleon: hierarchical clustering using dynamic modeling. Computer, 1999, 32(8): 68-75.
  • 9Ertoz L, Steinbach M, Kumar V. Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proceedings of the 3rd SIAM International Conference on Data Mining. San Francisco, USA: SIAM, 2003. 47-58.
  • 10Zhao Y, Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 2004, 55(3): 311-331.

共引文献234

同被引文献85

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部