摘要
在开展一系列水下航行器模型试验的基础上,获取艇体、舵翼、推进器等的水动力参数,建立六自由度动力学模型。然后,基于RBF神经网络算法,对模型中的向心力、科氏力和阻尼项进行黑箱建模。通过水平面和垂直面的操纵运动仿真,对RBF神经网络在水下航行器黑箱建模中的有效性进行验证。
Based on a series of captive model tests for an underwater vehicle, the hydrodynamic parameters of the vehicle hull, rudder and thrust are all obtained, and the 6 dof dynamic model is established. Then the black model of centripetal and Coriolis force as well as the damping term is calculated by using RBF neural network. By means of hydrodynamic simulation in the horizontal and vertical plane, the effectiveness of RBF neural network on underwater vehicle's black modeling is validated.
作者
孙新蕾
徐锋
黄铖
杨路春
SUN Xin-lei;XU Feng;HUANG Cheng;YANG Lu-chun(Wuhan College,Wuhan 430212,China;Wuhan Second Ship Design and Research Institute,Wuhan 430205,China;Wuchang Shipbuilding Industry Group Co.Ltd,Wuhan 430060,China)
出处
《舰船科学技术》
北大核心
2018年第9期75-77,129,共4页
Ship Science and Technology
基金
国家自然科学基金资助项目(NSFC51509193)
关键词
水下航行器
神经网络
黑箱建模
模型试验
underwater vehicle
neural network
black-box modeling
model test