期刊文献+

自适应特征选择加权k子凸包分类

Weighted k sub-convex-hull classifier based on adaptive feature selection
原文传递
导出
摘要 针对问题维数的增加以及不同特征对分类的作用往往不一样,导致k子凸包分类性能降低等问题,设计自适应特征选择加权k子凸包分类方法。根据传统凸包距离存在的不足引入加权k子凸包距离,在测试样本的k邻域内引入距离度量学习技术和正则化技术进行自适应的特征选择,并将自适应特征选择无缝嵌入加权k子凸包优化模型中,这样就能为不同的测试样本在不同的类别中学习自适应特征空间,得到有效的加权k子凸包距离计算方法。试验结果表明,该方法不仅能够进行降维,而且具有明显的分类性能优势。 Because of the increase of the dimension of the problem and the effect of different features on classifier,the performance of the k sub-convex-hull classifier was seriously reduced. An adaptive feature selection weighted k sub-convex-hull classifier was designed( AWCH). A weighted k sub-convex-hull classifier was designed according to the shortcomings of conventional convex hull distance. By applying the distance metric learning and regularization technique in the k neighborhood of the test sample,an adaptive feature selection method was designed and seamlessly integrated into the optimization model on the weighted k sub-convex-hull.Through these efforts,for different test samples,an adaptive feature space in different categories could be extracted,and a valid weighted k sub-convex-hull distance could be obtained. Experimental results showed that the AWCH not only reduced the dimension of the problem,but also was significantly superior to similar classifiers.
作者 牟廉明 MOU Lianming(College of Mathematics and Information Science,Neijiang Normal University,Neijiang 641100,Sichuan,China;Data Recovery Key Laboratory of Sichuan Province,Neijiang 641100,Sichuan,China)
出处 《山东大学学报(工学版)》 CAS 北大核心 2018年第5期32-37,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(10872085) 四川省科技厅科技计划重点资助项目(2017JY0199) 四川教育厅自然科学重点项目基金资助项目(13ZA0008) 2015内江市科技支撑计划资助项目
关键词 加权k子凸包 度量学习 正则化 特征选择 自适应 weighted k sub-convex-hull classifier distance metric learning regularization feature selection adaptive
  • 相关文献

参考文献10

二级参考文献64

  • 1牟廉明.k子凸包分类方法[J].山西大学学报(自然科学版),2011,34(3):374-380. 被引量:5
  • 2苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 3罗辛,邰晓英,SHISHIBORI Masami,KITA Kenji.一种基于度量距离学习的图像检索方法[J].广西师范大学学报(自然科学版),2007,25(2):186-189. 被引量:5
  • 4李荣陆.中文文本分类语料[EB/OL].[2008-01-20].http://www.nip.org.cn/docs/doclist.php.
  • 5VAPNIK V N. An overview of statistical learning theory [ J ]. IEEE Transactions on Neural Networks, 1999,10 (5) :988-999.
  • 6CRISTIANINI N, SHAWE-TAYLOR J. Introduction to support vector machine and other kernel based learning machine[M]. Cambridge: Cambridge University Press, 2000.
  • 7VAPNIK V N, VAPNIK V. Statistical learning theory[M]. New York: Wiley New York,1998.
  • 8WESTON J, MUKHERJEE S, CHAPELLE O, et al. Feature selection for SVMs[J ]. Advances in Neural Information Processing Systems, 2001: 668-674.
  • 9WANG L, YU J. Fault feature selection based on modified binary PSO with mutation and its application in chemical process fault diagnosis[ J]. Lecture Notes in Computer Science, 2005, 3612:832.
  • 10DE FALCO I, DELLA CIOPPA A, TARANTINO E. Facing classification problems with particle swarm optimization [ J ]. Applied Soft Computing Journal, 2007, 7( 3 ) :652-658.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部