期刊文献+

不同送风断面面积对临界风速的影响分析 被引量:3

Analysis of the impact of the different air supply cross-sectional areas on the critical velocity
原文传递
导出
摘要 临界风速是隧道通风排烟设计的关键参数,为研究不同送风断面面积对临界风速的影响,采用1∶20隧道模型和12种不同火源功率,设计5种送风断面(分别为全断面送风、3/4断面送风、1/2断面送风、1/3断面送风和1/4断面送风),通过理论分析、数值模拟及部分模型试验研究了不同送风断面面积对临界风速的影响。结果表明,在不同火源功率下,送风断面面积越大,临界风速越小,两者成反比关系。在不同送风断面面积下,当无量纲火源功率低于0. 2时,临界速度逐渐增大;当无量纲火源功率高于0. 2时,临界风速几乎保持不变,其大小与火源功率无关。对数据结果进行拟合,得到了不同送风断面面积的隧道火灾临界风速模型,并与试验结果取得了较好的一致性。 Through a numerical simulation and the partial model tests, the given paper has made an exploration of the impact of the different air supply cross-sectional areas on the critical velocity, which is the key parameter of the tunnel ventilation and smoke exhaust design. For this purpose, the paper has designed 5 kinds of air supply sections, including a full section air supply project in an 1:20 ratio tunnel model at 12 different heat-releasing rates, with a 3/4, 1/2, 1/3, and 1/4 sections of air supplies. Accord- ing to the - theorem and the similarity ttleory, the paper has also made an analysis of the related factors that influence the critical velocity and derived the dimensionless relationship among the critical velocity, the air supply section area and the heat release rate, with FDS 6. 1 being used for numerical simulation. The re- sults of our analysis demonstrate that, under the different heat release rates, the larger the crosssection area, the smaller the criti- cal velocity would be, thus, implying that there exists an inverse relation between the two factors. What is more, the ratio of the critical velocity tends to increase linearly with the reduction of the crosssectional area of the air supply, whose increase ratio can be actually almost the same as that of the reduction. Therefore, under the different air supply cross-sectional areas, in case the di- mensionless heat release rate is lower than 0. 2, the critical speed would be gradually increasing. For example, when the dimension- less heat releasing rate is greater than 0. 2, the critical velocity would be almost invariable with its size being independent of the heat release rate. Knitting the results of the data, it would be possible to gain the formula of the critical velocities of the tunnel fires with the different cross-sectional areas of the air supply, whose correlation coefficient should be equal to 0. 991 3. Thus, the critical velocity model we have worked out turns to be well in accord with the experimental results. Hence, the model we have developed is in a position to provide a valuable reference for the design of ventilation and smoke exhausting system in the highway tunnel.
作者 姜学鹏 张红新 何振华 JIANG Xue-peng;ZHANG Hong-xin;HE Zhen-hua(School of Resource and Environmental Engineering,Wuhan University of Science and Technology,Wuhan 430081,China;Industrial Safety Engineering Technology Research Center of Hu~ bei Province,Wuhan University of Science and Technology,Wu-han,430081,China;Institute of Fire Safety Technology,Wu-han University of Science and Technology,Wuhau 430081,Chi-na;Tunnel and Underground Space Institute,Central and Southern China Municipal Engineering Design & Research Institu-te Co.,Ltd.,Wuhan 430081,China)
出处 《安全与环境学报》 CAS CSCD 北大核心 2018年第5期1841-1846,共6页 Journal of Safety and Environment
基金 国家自然科学基金项目(51874213) 公安部消防局科研计划项目(2016XFCX20)
关键词 安全工程 隧道火灾 临界风速 送风断面面积 逆流长度 safety engineering tunnel fire critical velocity airsupply section area backlayering length
  • 相关文献

参考文献2

二级参考文献19

  • 1毛军,郗艳红,杨国伟.列车编成辆数对高速列车横风气动特性影响的数值分析[J].中国铁道科学,2012,33(1):78-85. 被引量:7
  • 2谢宁,冯炼,王婉娣,张发勇.隧道火灾三维数值模拟的瞬态分析[J].中国铁道科学,2005,26(6):89-92. 被引量:17
  • 3蒋正华,应之丁,傅立新,徐爱民.雪峰山隧道横洞专用防火门研究[J].中南公路工程,2006,31(1):14-17. 被引量:6
  • 4KENNEDY W D, GONZALES J A, SANCHEZ J G. Derivation and Application of the SES Critical Velocity Equa- tions [J]. ASHRAE Trans: Research, 1996, 102 (2): 40-44.
  • 5OKA Y, ATKONSON G T. Control of Smoke Flow in Tunnel Fires [J]. Fire Safety Journal, 1995, 25 (4): 305-322.
  • 6ATKONSON G T, WU Y. Smoke Control in Sloping Tunnels [J]. Fire Safety Journal, 1996, 27 (4) : 335-341.
  • 7WU Y, BAKAR M Z A. Control of Smoke Flow in Tunnel Fires Using Longitudinal Ventilation Systems-a Study of the Critical Velocity [J]. Fire Safety Journal, 2000, 35 (4) .. 363-390.
  • 8LI Yingzhen, LEI t3o, INGASON H. Study of Critical Velocity and Backlayering Length in Longitudinally Ventilated Tunnel Fires l-J]. Fire Safety Journal, 2010, 45 (6-8).. 361-370.
  • 9LI Liming, CHENG Xudong, CUI Y, et al. Effect of Blockage Ratio on Critical Velocity in Tunnel Fires [J]. Jour- nal of Fire Sciences, 2012, 30 (5) .. 413-427.
  • 10YEE-PING LEE, KUANG-CHUNG TSAI. Effect of Vehicular Blockage on Critical Ventilation Velocity and Tunnel Fire Behavior in Longitudinally Ventilated Tunnels [J]. Fire Safety Journal, 2012, 53 (10): 35-42.

共引文献21

同被引文献21

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部