摘要
Ion optics are crucial components of ion thrusters and the study of the different ion extraction solutions used since the beginning of the electric propulsion era is essential to understand the evolution of ion engines. This work describes ion engine grids' main functions, parameters and issues related to thermal expansion and sputter erosion, and then introduces a review of ion optics used for significant launched and tested ion thrusters since 1970. Configurations, geometries, materials and fabrication methods are analyzed to understand when typical ion thrusters use two or three grids, what are the thicknesses and aperture sizes of the screen, accelerator and decelerator grids, why molybdenum and carbon-based materials such as pyrolytic graphite and carbon–carbon are the best available options for ion optics and what is the manufacturing method for each material.
Ion optics are crucial components of ion thrusters and the study of the different ion extraction solutions used since the beginning of the electric propulsion era is essential to understand the evolution of ion engines. This work describes ion engine grids' main functions, parameters and issues related to thermal expansion and sputter erosion, and then introduces a review of ion optics used for significant launched and tested ion thrusters since 1970. Configurations, geometries, materials and fabrication methods are analyzed to understand when typical ion thrusters use two or three grids, what are the thicknesses and aperture sizes of the screen, accelerator and decelerator grids, why molybdenum and carbon-based materials such as pyrolytic graphite and carbon–carbon are the best available options for ion optics and what is the manufacturing method for each material.