期刊文献+

基于无监督特征学习的行星齿轮箱故障特征提取和检测 被引量:11

Feature Extraction and Detection of Planetary Gear Box Fault Using Unsupervised Feature Learning
原文传递
导出
摘要 风电机组行星齿轮箱振动信号是一种非平稳、非线性信号,传统故障检测方法对于此类信号处理能力有限。将卷积自动编码器引入风机故障检测领域,构建了一种一维卷积自动编码器网络结构。首先训练卷积自动编码器无监督的提取数据特征,得到行星轮不同健康状况的特征向量,再对特征向量求取平均值获得指标向量。通过监督学习获得最优闵可夫斯基指数,最后通过测试数据的特征向量和指标向量之间的闵式距离来判断故障类型,实现了行星齿轮不同健康状况数据的识别和分类。实验结果证明,该方法可以有效的提取行星齿轮箱故障特征并达到诊断故障的目的。 The vibration signals of planetary gearbox of wind turbines are non-stationary and nonlinear signals. Traditional fault detection methods have limited capacity to process such signals. In this paper, convolutional automatic encoder is introduced into the field of wind turbine fault detection, and a network structure of one dimensional convolutional automatic encoder is constructed. Firstly, unsupervised extraction of data features is performed using convolutional automatic encoders. The characteristic vectors and index vectors of different health conditions of planetary gear are obtained. Optimal Minkowski index is obtained by supervised learning, and the fault type is determined by Minkowski distance between the feature vector of the test data and the index vector. Experimental results show that the method can effectively extract the fault characteristics of planetary gear box and achieve fault diagnosis purpose.
作者 李东东 王浩 杨帆 郑小霞 华伟 邹胜华 LI Dongdong;WANG Hao;YANG Fan;ZHENG Xiaoxia;HUA Wei;ZOU Shenghua(School of Electrical Engineering,Shanghai University of Electric Power,Yangpu District,Shanghai 200090,China;School of Automation Engineering,Shanghai University of Electric Power,Yangpu District,Shanghai 200090,China;State Grid Northeast of Jiangxi Power Supply Branch,Leping 333300,Jiangxi Province,China)
出处 《电网技术》 EI CSCD 北大核心 2018年第11期3805-3811,共7页 Power System Technology
基金 国家自然科学基金项目(51407114,51507098) 上海市科学技术委员会资助(13DZ2251900,10DZ2273400) 上海市“曙光计划”项目(15SG50)~~
关键词 行星齿轮箱 卷积自动编码器 闵式距离 无监督学习 故障诊断 planetary gearbox convolutional automatic encoder Minkowski distance unsupervised learning fault diagnosis
  • 相关文献

参考文献10

二级参考文献125

  • 1张镇,关书强.风电机组故障统计分析研究[J].风能,2013(8):68-71. 被引量:15
  • 2刁锦辉,蒋东翔,赵钢,钱立军.基于小波变换的汽轮发电机组振动故障检测与诊断方法[J].汽轮机技术,2004,46(4):253-255. 被引量:2
  • 3迟永宁,刘燕华,王伟胜,陈默子,戴慧珠.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81. 被引量:500
  • 4Amirat Y, Benbouzid M, A1-Ahmar E, et al. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 5Hameed Z, Hong Y, Cho Y, et al. Condition monitoring and fault detection of wind turbines and related algorithms : a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 6Xu Z, Xuan J, Shi T, et al. A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique[J]. Expert Systems with Applications, 2009(36): 11801-11807.
  • 7Lei Y, He Z, Zi Y, et al. New clutering algorithm-based fault diagnosis using compensation distance evaluation technique [J]. Mechanical Systems and Signal Processing, 2008(22):419-435.
  • 8Sreejith B, Verma A, Srividya A. Fault diagnosis of rolling element bearing using time-domain features and neural networks[C]//2008 IEEE Region 10 Colloquium and the Third ICIIS. Kharagpur, India: IEEE, 2008: 1-8.
  • 9Zhang S,Transactions ASME J Engineering Gas Turbines Power,1997年,119期,379页
  • 10Yu I K,Electrical Power Energy Systems,1998年,20卷,7期,465页

共引文献929

同被引文献135

引证文献11

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部