期刊文献+

不完备弱标记数据的粗糙协同学习模型 被引量:4

Rough Co-training Model for Incomplete Weakly Labeled Data
下载PDF
导出
摘要 针对不完备弱标记数据的学习问题,提出基于粗糙集理论的半监督协同学习模型.首先定义不完备弱标记数据的半监督差别矩阵,提出充分、具有差异性的约简子空间获取算法.然后在有标记数据集上利用各约简子空间训练两个基分类器.在无标记数据上,各分类器基于协同学习的思想标注信度较大的无标记样本给另一分类器学习,迭代更新直至无可利用的无标记数据. UCI数据集实验对比分析表明,文中模型可以获得更好的不完备弱标记数据的分类学习性能,具有有效性. To address the problem of learning from supervised co-training model based on rough set theory is incomplete weakly labeled data, a semi- proposed. A semi-supervised discernibility matrix is firstly defined and then used to generate two sufficient and diverse semi-supervised reducts. The base classifiers are trained on the labeled data with two reducts, and then the two classifiers are learned from each other on the unlabeled data by labeling the confident unlabeled examples to its concomitant until no eligible unlabeled example is available. Experimental results on selected UCI datasets show that the proposed model achieves better performance on incomplete weakly labeled data compared with other models, and the effectiveness of the proposed model is verified.
作者 高灿 周杰 高天宇 赖志辉 GAO Can1;2;ZHOU Jie1;2;GAO Tianyu3;LAI Zhihui1;2
出处 《模式识别与人工智能》 EI CSCD 北大核心 2018年第10期950-957,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61573248,61672358,61703283,61773328) 中国博士后基金项目(No.2016M590812,2017M612736,2017T100645) 广东省自然科学基金项目(No.2017A030310067)
关键词 粗糙集 差别矩阵 半监督约简 粗糙协同训练 不完备数据 Rough Sets Discernibility Matrix Semi-supervised Reduction Rough Co-training Incomplete Data
  • 相关文献

参考文献2

二级参考文献34

  • 1龙军,殷建平,祝恩,赵文涛.主动学习研究综述[J].计算机研究与发展,2008,45(z1):300-304. 被引量:31
  • 2于达仁,胡清华,鲍文.融合粗糙集和模糊聚类的连续数据知识发现[J].中国电机工程学报,2004,24(6):205-210. 被引量:70
  • 3谢宏,程浩忠,牛东晓.基于信息熵的粗糙集连续属性离散化算法[J].计算机学报,2005,28(9):1570-1574. 被引量:134
  • 4Pawlak Z. Rough sets [J]. International Journal of Computer and Information Science, 1982, 11(5): 341-356.
  • 5Pawlak Z. Rough sets: Theoretical Aspects of Reasoning about Data [M]. Dordrecht, Netherlands: Kluwer Academic Publishers, 1991.
  • 6Ching J Y, Wong A K C, Chan K C C. Class-dependent discretization for inductive learning from continuous and mixed mode data [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(7): 641-651.
  • 7Jensen R, Shen Q. Semantics-Preserving dimensionality reduction: rough and fuzzy-rough-based approaches [J]. IEEE Trans on Knowledge and Data Engineering, 2004, 16 (12): 1457-1471.
  • 8Zhu Xiaojin. Semi-Supervised learning survey, TR1530 [R]. Madison: Department of Computer Sciences, University of Wisconsin, 2008.
  • 9Gu Xueping, Tso S K. Applying rough-set concept to neural- network-based transient-stability classification of power systems[C]//Proc of the 5th Int Conf on Advances in Power System Control, Operation and Management. London: Institution of Engineering and Technology, 2000:400-404.
  • 10Duan Qiguo, Miao Duoqian, Jin Kaimin, A rough set approach to classifying web page without negative examples [C] //Proc of the llth Pacific-Asia Conf on Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2007, 481-488.

共引文献17

同被引文献36

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部